Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T04:08:58.507Z Has data issue: false hasContentIssue false

Mapping of force fields in a capacitively driven radiofrequency plasma discharge

Published online by Cambridge University Press:  01 July 2016

Michael Dropmann*
Affiliation:
Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place 97310, Waco, TX 76798-7310, USA Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany
M. Chen
Affiliation:
Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place 97310, Waco, TX 76798-7310, USA
H. Sabo
Affiliation:
Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place 97310, Waco, TX 76798-7310, USA
R. Laufer
Affiliation:
Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place 97310, Waco, TX 76798-7310, USA
G. Herdrich
Affiliation:
Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place 97310, Waco, TX 76798-7310, USA Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany
L. S. Matthews
Affiliation:
Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place 97310, Waco, TX 76798-7310, USA
T. W. Hyde*
Affiliation:
Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place 97310, Waco, TX 76798-7310, USA
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

In this paper a method is described that allows mapping of the forces acting on dust particles in a GEC reference cell. Monodisperse particles are dropped into the plasma environment and their trajectories are tracked using a high-speed camera system to determine local accelerations and respective forces. Collecting data from a large number of particle drops allows the identification of three-dimensional vector fields for the acting forces. The procedure is described and multiple examples in which the method has been applied are given. These examples include a simple plasma sheath, plasmas perturbed by a horizontal and vertical dipole magnet, an array of multiple magnets mimicking the fields found at a lunar swirl, and the fields inside a glass box used for particle confinement. Further applicability in other plasma environments will be discussed shortly.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buttenschn, B., Himpel, M. & Melzer, A. 2011 Spatially resolved three-dimensional particle dynamics in the void of dusty plasmas under microgravity using stereoscopy. New J. Phys. 13 (2), 023042.Google Scholar
Carstensen, J., Greiner, F., Hou, L.-J., Maurer, H. & Piel, A. 2009 Effect of neutral gas motion on the rotation of dust clusters in an axial magnetic field. Phys. Plasmas 16 (1), 013702.Google Scholar
Cheung, F., Samarian, A. & James, B. 2003 The rotation of planar-2 to planar-12 dust clusters in an axial magnetic field. New J. Phys. 5 (1), 75.175.15.CrossRefGoogle Scholar
Creel, J. R.2010 Characteristic measurements within a GEC rf reference cell. Master thesis, Baylor University, TX.Google Scholar
Criswell, D. R. 1972 Lunar dust motion. In Proc. of the Third Lunar Science Conference, vol. 3, pp. 26712680. MIT Press.Google Scholar
Dropmann, M., Knapp, A., Eichhorn, C., Lohle, S., Laufer, R., Herdrich, G., Matthews, L., Hyde, T., Fasoulas, S. & Roser, H.-P. 2016 Comparison of plasma magnetic field interactions in a static and dynamic plasma facility. Trans. JSASS Aerospace Tech. Japan 14 (ists30), Pe_21Pe_26.Google Scholar
Dropmann, M., Laufer, R., Herdrich, G., Matthews, L. S. & Hyde, T. W. 2015 An analysis of magnetic field plasma interactions using micro particles as probes. Phys. Rev. E 92, 023107.Google Scholar
Epstein, P. S. 1924 On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23 (6), 710733.Google Scholar
Fortov, V. E., Khrapak, A. G., Khrapak, S. A., Molotkov, V. I. & Petrov, O. F. 2004 Dusty plasmas. Phys.-Uspekhi 47 (5), 447492.CrossRefGoogle Scholar
Gillman, E. D. & Amatucci, W. E. 2014 Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection. Phys. Plasmas 21 (6), 060701.Google Scholar
Hartmann, P., Kovcs, A. Z., Reyes, J. C., Matthews, L. S. & Hyde, T. W. 2014 Dust as probe for horizontal field distribution in low pressure gas discharges. Plasma Sources Sci. Technol. 23 (4), 045008.Google Scholar
Hemingway, D. & Garrick-Bethell, I. 2012 Magnetic field direction and lunar swirl morphology: insights from Airy and Reiner Gamma. J. Geophys. Res.: Planets 117 (E10), E10012.Google Scholar
Khrapak, S. A., Ivlev, A. V., Morfill, G. E. & Thomas, H. M. 2002 Ion drag force in complex plasmas. Phys. Rev. E 66 (4), 046414.Google ScholarPubMed
Knapp, A., Haag, D., Ono, N., Fertig, M., Herdrich, G. & Auweter-Kurtz, M. 2009 Experimental and numerical analysis of the impact of a strong permanent magnet on Argon plasma flow. In 40th AIAA Plasmadynamics and Lasers Conf., American Institute of Aeronautics and Astronautics.Google Scholar
Konopka, U., Samsonov, D., Ivlev, A. V., Goree, J., Steinberg, V. & Morfill, G. E. 2000 Rigid and differential plasma crystal rotation induced by magnetic fields. Phys. Rev. E 61 (2), 18901898.Google ScholarPubMed
Kretschmer, M., Khrapak, S. A., Zhdanov, S. K., Thomas, H. M., Morfill, G. E., Fortov, V. E., Lipaev, A. M., Molotkov, V. I., Ivanov, A. I. & Turin, M. V. 2005 Force field inside the void in complex plasmas under microgravity conditions. Phys. Rev. E 71 (5), 056401.Google Scholar
Kuhn, H. W. 1955 The Hungarian method for the assignment problem. Naval Res. Logistics Quart. 2 (1–2), 8397.CrossRefGoogle Scholar
Lee, H. C., Chen, D. Y. & Rosenstein, B. 1997 Phase diagram of crystals of dusty plasma. Phys. Rev. E 56 (4), 45964607.Google Scholar
Matthews, L. S. & Hyde, T. W. 2003 Gravitoelectrodynamics in Saturn’s F ring: encounters with Prometheus and Pandora. J. Phys. A: Math. Gen. 36 (22), 6207.CrossRefGoogle Scholar
Melzer, A., Homann, A. & Piel, A. 1996 Experimental investigation of the melting transition of the plasma crystal. Phys. Rev. E 53 (3), 27572766.Google Scholar
Puttscher, M. & Melzer, A. 2014 Dust particles under the influence of crossed electric and magnetic fields in the sheath of an RF discharge. Phys. Plasmas 21 (12), 123704.Google Scholar
Quinn, R. A., Cui, C., Goree, J., Pieper, J. B., Thomas, H. & Morfill, G. E. 1996 Structural analysis of a Coulomb lattice in a dusty plasma. Phys. Rev. E 53 (3), R2049R2052.Google Scholar
Testi, L., Birnstiel, T., Ricci, L., Andrews, S., Blum, J., Carpenter, J., Dominik, C., Isella, A., Natta, A., Williams, J. et al. 2014 Dust evolution in protoplanetary disks. In Protostars and Planets VI (ed. Beuther, H. et al. ), pp. 339361. University of Arizona.Google Scholar
Wang, X., Hornyi, M. & Robertson, S. 2009 Experiments on dust transport in plasma to investigate the origin of the lunar horizon glow. J. Geophys. Res.: Space Phys. 114 (A5), A05103.Google Scholar
Wernitz, R., Knapp, A., Eichhorn, C., Fulge, H., Herdrich, G., Lohle, S., F., S., Auweter-Kurtz, M. & Roser, H.-P. 2011 Emission spectroscopic investigation of the radial distribution of ArI und ArII in Argon plasma flows under the influence of magnetic field. In 42nd AIAA Plasmadynamics and Lasers Conf., American Institute of Aeronautics and Astronautics.Google Scholar
Winter, J. 1998 Dust in fusion devices – experimental evidence, possible sources and consequences. Plasma Phys. Control. Fusion 40 (6), 1201.Google Scholar
Wolter, M., Melzer, A., Arp, O., Klindworth, M. & Piel, A. 2007 Force measurements in dusty plasmas under microgravity by means of laser manipulation. Phys. Plasmas 14 (12), 123707.Google Scholar
Zhukhovitskii, D. I., Petrov, O. F., Hyde, T. W., Herdrich, G., Laufer, R., Dropmann, M. & Matthews, L. S. 2015 Electrical conductivity of the thermal dusty plasma under the conditions of a hybrid plasma environment simulation facility. New J. Phys. 17 (5), 053041.Google Scholar