Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T06:04:04.107Z Has data issue: false hasContentIssue false

The MaPLE device: A linear machine for laboratory studies of the magnetized plasma physics phenomena

Published online by Cambridge University Press:  01 December 2014

Subir Biswas*
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
Satyajit Chowdhury
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
Abhik M. Pal
Affiliation:
AMITY University, Manesar, Haryana, India
Shashwat Bhattacharya
Affiliation:
Technical University Munich, Germany
Subhasis Basu
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
Monobir Chattopadhyay
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
Nikhil Chakrabarti
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
Rabindranath Pal
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
*
Email address for correspondence: [email protected]

Abstract

The Magnetized Plasma Linear Experimental (MaPLE) device is developed in the plasma physics laboratory of the Saha Institute of Nuclear Physics for studying basic plasma physics phenomena like waves, instabilities and their nonlinear behavior in magnetized plasma. Details description of the device and its plasma characteristics are presented. The machine provides flexibilities in terms of magnetic configuration and plasma sources. Recently, low frequency drift waves are excited in the weak density gradient region of electron cyclotron resonance (ECR) produced low density plasmas and their nonlinear coupling is studied. Results of this experiment and some more experiments done in the device are summarized. Reasoning behind a possible upgrade plan of the device for studying shear Alfven waves (SAW) and magnetic drift waves in future is also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfven, H. 1942 Existence of electromagnetic-hydrodynamic waves. Nature 150, 405.Google Scholar
Bernstein, I. B. 1958 Waves in a plasma in a magnetic field. Phys. Rev. 109, 10.Google Scholar
Biswas, S. 2013 Study on plasma waves and instabilities and their nonlinear behavior in magnetized plasma of SINP maple device. PhD thesis, University of Calcutta, Kolkata, India.Google Scholar
Biswas, S., Basu, D., Chakrabarti, N. and Pal, R. 2013 Selective excitation of low frequency driftwaves by density modulation and parametric excitation of higher frequency mode. Phys. Rev. Lett. 111, 115 004.CrossRefGoogle ScholarPubMed
Biswas, S., Chattopadhyay, M. and Pal, R. 2011 Magnetic shield for turbomolecular pump of the magnetized plasma linear experimental device at Saha institute of nuclear physics. Rev. Sci. Instrum. 82, 013 506.CrossRefGoogle ScholarPubMed
Biswas, S., Iyengar, A. N. S. and Pal, R. 2012 Investigation of long-range temporal correlation in electron cyclotron resonance produced linear magnetized plasma of the maple device. Phys. Plasmas 19, 032 310.CrossRefGoogle Scholar
Carreras, B. A. 2005 Plasma edge cross-field transport: experiment and theory. J. Nucl. Mater. 337–339, 315.Google Scholar
Carreras, B. A.et al. 1998 Long-range time correlations in plasma edge turbulence. Phys. Rev. Lett. 80, 4438.Google Scholar
Chakrabarti, N. and Singh, R. 2004 Magnetic electron drift waves in electron magnetohydrodynamic plasmas. Phys. Plasmas 11, 5475.Google Scholar
Chen, L. and Zonca, F. 2013 On nonlinear physics of shear Alfven waves. Phys. Plasmas 20, 055 402.CrossRefGoogle Scholar
Conrads, H. and Schmidt, M. 2000 Plasma generation and plasma sources. Plasma Sources Sci. Technol. 9, 441.CrossRefGoogle Scholar
Ellis, R. F., Marden-Marshall, E. and Majeski, R. 1980 Collisional drift instability of a weakly ionized argon plasma. Plasma Phys. 22, 113.Google Scholar
Epperlein, E. M., Short, R. W. and Simon, A. 1992 Damping of ion-acoustic waves in the presence of electron-ion collisions. Phys. Rev. Lett. 69, 1765.CrossRefGoogle ScholarPubMed
Gekelman, W. 1999 Review of laboratory experiments on alfven waves and their relationship to space observations. J. Geophys. Res. 104, 14 417.Google Scholar
Geller, R. 1996 Electron Cyclotron Resonance, Ion Source and ECR Plasmas. London: IOP Publishing.Google Scholar
Gilmore, M., Yu, C. X., Rhodes, T. L. and Peebles, W. A. 2002 Investigation of rescaled range analysis, the hurst exponent, and long-time correlations in plasma turbulence. Phys. Plasmas 9, 1312.Google Scholar
Helliwell, R. A. 1965 Whistlers and Related Ionospheric Phenomena. Stanford: Stanford University Press.Google Scholar
Hendel, H. W., Coppi, B., Perkins, F. and Polittzer, P. A. 1967 Collisional effects in plasmasdrift wave experiments and interpretation. Phys. Rev. Lett. 18, 439.Google Scholar
Horton, W. 1999 Drift waves and transport. Rev. Mod. Phys. 71, 735.Google Scholar
Klinger, T., Latten, A., Piel, A., Bonhomme, G., Pierre, T. and de Wit, T. D. 1997 Route to drift wave chaos and turbulence in a bounded low-β plasma experiment. Phys. Rev. Lett. 79, 3913.CrossRefGoogle Scholar
Knechtli, R. C. and Wada, J. M. 1961 Generation and measurement of highly ionized quiscent plasma in steady state. Phys. Rev. Lett. 6, 215.Google Scholar
Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics. New York: McGraw-Hill Book Company.Google Scholar
Pal, A. M., Bhattacharya, S., Biswas, S., Basu, S. and Pal, R. 2014 A novel method of sensing temperatures of magnet coils of SINP-maple plasma device. J. Instrum. 9, T03 001.Google Scholar
Pal, R., Biswas, S., Basu, S., Chattopadhyay, M., Basu, D. and Chaudhury, M. 2010 The MaPLE device of Saha Institute of Nuclear Physics: construction and its plasma aspects. Rev. Sci. Instrum. 81, 073 507.Google Scholar
Pecseli, H. L., Mikkelsen, T. and Larsen, S. 1983 Drift wave turbulence in low-β plasmas. Plasma Phys. 25, 1173.Google Scholar
Politzer, P. A. 1971 Drift instabilities in collisionless alkali-metal plasmas. Phys. Fluids 14, 2410.Google Scholar
Priest, E. and Forbes, T. 2000 Magnetic Reconnection–MHD Theory and Application. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Puri, S., Leuterer, F. and Tutter, M. 1973 Dispersion curves for the generalized Bernstein modes. J. Plasmas Phys. 9, 89.Google Scholar
Rynn, N. and D'Angelo, N. 1960 Device for low temperature, highly ionized cesium plasma. Rev. Sci. Instrum. 31, 1326.CrossRefGoogle Scholar
Self, S. A. 1970 Ion waves, drift waves and instability in a weakly ionized magnetoplasma. J. Plasmas Phys. 4, 693.Google Scholar
Shukla, P. K. and Stenflo, L. 2000 Generalized dispersive Alfven waves. J. Plasmas Phys. 64, 125.Google Scholar
Soward, A. M. and Priest, E. R. 1986 Magnetic field-line reconnection with jets. J. Plasmas Phys. 35, 333.CrossRefGoogle Scholar
Suszcynsky, D. M., Cartier, S. L., D'Angelo, N. and Merlino, R. L. 1987 Influence of the ion/neutral atom mass ratio on the damping of electrostatic ioncyclotron waves. Phys. Fluids 30, 3304.Google Scholar
Tanaka, M. Y., Bacal, M., Sasao, M. and Kuroda, T. 1998 High-density plasma production for neutralizing negative ion beam. Rev. Sci. Instrum. 69, 980.Google Scholar
Wong, A. Y., Goldman, M. V., Hai, F. and Rowberg, R. 1968 Parametric excitation from thermal fluctuation at plasma-drift wave frequencies. Phys. Rev. Lett. 21, 518.Google Scholar
Yamada, M., Kulsrud, R. and Ji, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82, 603.Google Scholar
Yamamoto, T. 1975 Nonlinear theory of a whistler wave. J. Plasmas Phys. 14, 543.CrossRefGoogle Scholar