Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T15:36:15.284Z Has data issue: false hasContentIssue false

Magnetogasdynamic shock polar: exact solution in aligned fields

Published online by Cambridge University Press:  13 March 2009

Lee A. Bertram
Affiliation:
Department of Engineering Mechanics, Iowa State University

Abstract

The shock conditions for a perfect gas in aligned-fields magnetogasdynamics are solved to give all variables downstream as rational functions of the density ratio. The thermodynamically admissible, evolutionary shock solutions are exhaustively classified into seven shock polar types, including a new type of supersonic, sub -Alfvénic polar. Example polars of each type are presented in the magnetograph (dimensionless magnetic induction vector plane) and in the Taniuti–Resler diagram (M, A plane) in order to display, respectively, the shock geometry and the state of the gas. A short discussion of the relation of the shock properties to flow over bodies is presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A. Ia., Lyubarskiî, G. Ia. & Polovin, R. V. 1958 Soviet Phys. JETP, 8, 507.Google Scholar
Bazer, J. & Ericson, W. B. 1959 Astrophys. J. 117, 177.Google Scholar
Bazer, J. & Ericson, W. B. 1962 Proc. Symp. on Electromagnetics and Fluid Dynamics of Gaseous Plasma, p. 387. New York: Polytechnic Press.Google Scholar
Bertram, L. A. 1969 Ph.D. thesis, Illinois Institute of Technology.Google Scholar
Bertram, L. A. & Lynn, Y. M. 1972 J. Fluid Mech. 52, 17.CrossRefGoogle Scholar
Cabannes, H. 1963 C. R. Acad. Sci. 257, 375.Google Scholar
Friedrichs, K. O. & Kranzer, H. 1958 New York University Courant Institute of Mathematical Sciences Rep. NYO-6486-VIII.Google Scholar
Geffen, N. 1963 Phys. Fluids, 6, 566.CrossRefGoogle Scholar
Helfer, H. L. 1953 Astrophys. J. 117, 177.CrossRefGoogle Scholar
Jeffrey, A. & Taniuti, T. 1964 Nonlinear Wave Propagation. Academic.Google Scholar
Kogan, M. N. 1959 J. Appl. Math. Mech. 24, 530.CrossRefGoogle Scholar
Kogan, M. N. 1960 J. Appl. Math. Mech. 24, 370.Google Scholar
Kogan, M. N. 1962 Elements of Magnetogasdynamics (1967 ed. Kalikham, L. E.), p. 142. Philadelphia: W. B. Saunders.Google Scholar
Liepmann, H. W. & Roshko, A. 1957 Elements of Gasdynamics. Wiley.CrossRefGoogle Scholar
Lüst, R. 1955 Z. Naturforschung, A 10, 125.CrossRefGoogle Scholar
Lynn, Y. M. 1966 Phys. Fluids, 9, 314.CrossRefGoogle Scholar
Lynn, Y. M. 1971 J. Plasma Phys. 6, 283.CrossRefGoogle Scholar
Morioka, S. 1961 J. Phys. Soc. Japan, 16, 2346.CrossRefGoogle Scholar
Pack, D. C. & Swan, G. W. 1965 J. Inst. Maths. Applics. 1, 317.CrossRefGoogle Scholar
Resler, E. L. & McCune, J. E. 1959 The Magnetogasdynamics of Conducting Fluids (ed. Bershader, D.), p. 120. Stanford University Press.Google Scholar
Seebass, A. R. 1962 IUTAM Symp. Transom. Aachen, p. 471. Springer.Google Scholar
Shercliff, J. A. 1960 J. Fluid Mech. 9, 481.CrossRefGoogle Scholar
Stewartson, K. 1960 Rev. Mod. Phys. 32, 855.CrossRefGoogle Scholar
Tamada, K. 1962 Phys. Fluids, 5, 871.CrossRefGoogle Scholar
Taniuti, T. 1958 Prog. Theor. Phys. (Kyoto) 19, 749.CrossRefGoogle Scholar
Taniuti, T. 1962 Prog. Theor. Phys. (Kyoto) 28, 756.CrossRefGoogle Scholar
Urashima, S. & Morioka, S. 1966 J. Phys. Soc. Japan, 21, 1431.CrossRefGoogle Scholar