Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:49:11.445Z Has data issue: false hasContentIssue false

Magneto-acoustic surface waves on current sheets

Published online by Cambridge University Press:  13 March 2009

N. F. Cramer
Affiliation:
School of Physics, The University of Sydney, NSW 2006, Australia

Abstract

The theory of linear magneto-acoustic surface waves is investigated for current sheets across which the magnetic field has an arbitrary change of direction: in the first place discontinuously, and in the second place via a narrow transition region in which the magnetic field rotates with constant amplitude, so that the gas pressure remains constant. It is found that the effect of non-zero pressure is to eliminate the surface wave for certain angles of propagation and to allow the existence of an additional, slower, surface wave for other angles of propagation. The resonance damping of the surface waves when the current sheet is of small non-zero width is considered, and it is found that Alfvénresonance damping always occurs, as well as (for high β and certain angles of propagation) compressive- or cusp-resonance damping.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, A. 1979 Solar System Plasma Physics (ed. Parker, E. N., Kennel, C. C. & Lanzerotti, L. J.). North-Holland.Google Scholar
Cramer, N. F. & Donnelly, I. J. 1983 a Plasma Phys. 25, 703.CrossRefGoogle Scholar
Cramer, N. F. & Donnelly, I. J. 1983 b Proc. Astron. Soc. Aust. 5, 196.CrossRefGoogle Scholar
Cramer, N. F. & Donnelly, I. J. 1992 Spatial Dispersion in Solids and Plasmas (ed. Halevi, P.). North-Holland.Google Scholar
Harris, E. 1962 Nuovo Cim. 23, 115.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1974 Phys. Rev. Lett. 32, 454.CrossRefGoogle Scholar
Hollweg, J. V. 1982 J. Geophys. Res. 87, 8065.CrossRefGoogle Scholar
Hopcraft, K. I. & Smith, P. R. 1985 Phys. Lett. 113 A, 75.CrossRefGoogle Scholar
Hopcraft, K. I. & Smith, P. R. 1986 Planet. Space Sci. 34, 1253.CrossRefGoogle Scholar
Musielak, Z. E. & Suess, S. T. 1988 Astrophys. J. 330, 456.CrossRefGoogle Scholar
Musielak, Z. E. & Suess, S. T. 1989 J. Plasma Phys. 42, 75.CrossRefGoogle Scholar
Roberts, B. 1981 Solar Phys. 69, 27.CrossRefGoogle Scholar
Seboldt, W. 1990 J. Geophys. Res. 95, 10471.CrossRefGoogle Scholar
Smith, P. R., Hopcraft, K. I. & Murphy, N. 1987 Magnetotail Physics (ed. Lui, A. T. Y.). The Johns Hopkins University Press.Google Scholar
Tataronis, J. A. & Grossmann, W. 1976 Nuci. Fusion 16, 667.CrossRefGoogle Scholar
Uberoi, C. & Satya, Narayan A. 1986 Plasma Phys. Contr. Fusion 28, 1635.CrossRefGoogle Scholar
Wentzel, D. G. 1979 Astrophys. J. 233, 756.CrossRefGoogle Scholar
Wessen, K. P. & Cramer, N. F. 1991 J. Plasma Phys. 45, 389.CrossRefGoogle Scholar