Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T13:02:11.908Z Has data issue: false hasContentIssue false

Magnetoacoustic modes in a magnetized dusty plasma

Published online by Cambridge University Press:  13 March 2009

N. N. Rao
Affiliation:
Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India

Abstract

The existence of various types of (fast) magnetoacoustic modes in different frequency regimes in a magnetized dusty plasma consisting of electrons, ions and dust particles is investigated. The analysis is carried out using an effective two-fluid MHD-like model which allows for the non-frozen motion of the component fluids. For frequencies much smaller than the dust particle gyro- frequency, we obtain a magnetoacoustic mode that is a generalization of the usual compressional fast hydromagnetic wave in an electron—ion plasma. In the higher-frequency regimes, we show the existence of two new types of modes called ‘Dust-magnetoacoustic waves’. Both modes are accompanied by compressional magnetic field and plasma number density perturbations, and are the electromagnetic generalizations of the dust-acoustic waves in an unmagnetized dusty plasma with thermal electrons and ions. For a two- component plasma, all three modes degenerate into the same fast magneto- acoustic wave found in the usual electron—ion plasmas. We also obtain another novel type of magneto-acoustic mode called a ‘dust—ion-magneto- acoustic wave’, which is an electromagnetic generalization of the dust—ion- acoustic wave. The dispersion relations as well as the frequency regimes for the existence of the various modes are explicitly obtained. An alternative derivation of the relevant governing equations using an approach similar to that employed in so-called ‘electron magnetohydrodynamics’ (EMHD) is also presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. E. 1992 Physica Scripta 45, 497.CrossRefGoogle Scholar
Barnes, M. S., Keller, J. H., Forster, J. C., O'Neill, J. A. & Coultas, D. K. 1992 Phys. Rev. Lett. 68, 313.CrossRefGoogle Scholar
Bharuthram, R. & Shukla, P. K. 1992a Planet. Space Sci. 40, 465.CrossRefGoogle Scholar
Bharuthram, R. & Shukla, P. K. 1992b Planet. Space Sci. 40, 647.CrossRefGoogle Scholar
Bliokh, P. V. & Yarashenko, V. V. 1985 Soviet Astron. 29, 330.Google Scholar
Bouchoule, A., Plain, A., Boufendi, L., Blondeau, J. P H. & Laure, C. 1991 J. Appl. Phys. 70, 1991.CrossRefGoogle Scholar
Carlile, R. N., Gehe, S., O'Hanlon, J. F. & Stewart, J. C. 1991 Appl. Phys. Lett. 59, 1167.CrossRefGoogle Scholar
D'Angelo, N. 1990 Planet. Space Sci. 38, 1143.CrossRefGoogle Scholar
D'Angelo, N. 1993 Planet. Space Sci. 41, 469.CrossRefGoogle Scholar
D'Angelo, N. & Song, B. 1990 Planet. Space Sci. 38, 1577.CrossRefGoogle Scholar
DE Angelis, U. 1992 Physica Scripta 45, 465.CrossRefGoogle Scholar
DE Angelis, U., Formisano, V. & Giordano, M. 1988 J. Plasma Phys. 40, 399.CrossRefGoogle Scholar
Goertz, C. K. 1989 Rev. Geophys. 27, 271.CrossRefGoogle Scholar
Gordeev, A. V., Kingsep, A. S. & Rudakov, L. I 1994 Phys. Rep. 243, 215.CrossRefGoogle Scholar
Hartquist, T. W., Havnes, O. & Morfill, G. E. 1992 Fund. Cosmic Phys. 15, 107.Google Scholar
Havnes, O., Melandsø, F., La Hoz, C., Aslaksen, T. K. & Hartquist, T. 1992 Physica Scripta 45, 535.CrossRefGoogle Scholar
LI, F., Havnes, O. & Melandsø, F. 1994 Planet Space Sci. 42, 401.CrossRefGoogle Scholar
Ma, J. X. & Yu, M. Y. 1994 Phys. Rev. E 50, 2431.Google Scholar
Melandsø, F., Aslaksen, T. K. & Havnes, O. 1993a Planet. Space Sci. 41, 312.CrossRefGoogle Scholar
Melandsø, F., Aslaksen, T. K. & Havnes, O. 1993b J. Geophys. Res. 98, 13315.CrossRefGoogle Scholar
Mendis, D. A. & Rosenberg, M. 1994 Ann. Rev. Astron. Astrophys. 32, 419.CrossRefGoogle Scholar
Motschmann, U., Sauer, K. & Roatsch, T. 1992 Geophys. Res. Lett. 19, 225.CrossRefGoogle Scholar
Nakano, T. & Umebayashi, T. 1980 Publ. Astron. Soc. Japan 32, 613.Google Scholar
Northrop, T. G. 1992 Physica Scripta 45, 475.CrossRefGoogle Scholar
Pilipp, W., Hartquist, T. W. & Havnes, O. 1987 Astrophys. J. 314, 341.CrossRefGoogle Scholar
Pilipp, W., Hartquist, T. W. & Havnes, O. 1990 Mon. Not. R. Astron. Soc. 243, 685.Google Scholar
Rao, N. N. 1993a J. Plasma Phys. 49, 375.CrossRefGoogle Scholar
Rao, N. N. 1993b Planet Space Sci. 41, 21.CrossRefGoogle Scholar
Rao, N. N. 1993c Physica Scripta 48, 363.CrossRefGoogle Scholar
Rao, N. N. & Shukla, P. K. 1994 Planet Space Sci. 42, 221.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Planet Space Sci. 38, 543.CrossRefGoogle Scholar
Rawat, S. P. S. & Rao, N. N. 1993 Planet. Space Sci. 41, 137.CrossRefGoogle Scholar
Rosenberg, M. 1993 Planet. Space Sci. 41, 229.CrossRefGoogle Scholar
Sheehan, D. P., Carillo, M. & Heidbrink, W. 1990 Rev. Sci. Instrum. 61, 3871.CrossRefGoogle Scholar
Shukla, P. K. 1992 Physica Scripta 45, 504.CrossRefGoogle Scholar
Shukla, P. K. & Silin, V. P. 1992 Physica Scripta 45, 508.CrossRefGoogle Scholar
Shukla, P. K. & Stenflo, L. 1992 Astrophys. Space Sci. 190, 23.CrossRefGoogle Scholar
Speiser, T. W. 1970 Planet Space Sci. 18, 613.CrossRefGoogle Scholar
Tsytovich, V. N. & Havnes, O. 1993 Comments Plasma Phys. Contr. Fusion 15, 267.Google Scholar
Varma, R. K., Shukla, P. K. & Krishan, V. 1993 Phys. Rev. E 47, 3612.Google Scholar
Vladimirov, S. V. 1994 Phys. Plasmas 1, 2762.CrossRefGoogle Scholar