Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T05:37:04.789Z Has data issue: false hasContentIssue false

The magnetized dusty plasma experiment (MDPX)

Published online by Cambridge University Press:  27 February 2015

E. Thomas Jr.*
Affiliation:
Physics Department, 206 Allison Laboratory, Auburn University, Auburn, AL 36849-5311
U. Konopka
Affiliation:
Physics Department, 206 Allison Laboratory, Auburn University, Auburn, AL 36849-5311
D. Artis
Affiliation:
Physics Department, 206 Allison Laboratory, Auburn University, Auburn, AL 36849-5311
B. Lynch
Affiliation:
Physics Department, 206 Allison Laboratory, Auburn University, Auburn, AL 36849-5311
S. Leblanc
Affiliation:
Physics Department, 206 Allison Laboratory, Auburn University, Auburn, AL 36849-5311
S. Adams
Affiliation:
Physics Department, 206 Allison Laboratory, Auburn University, Auburn, AL 36849-5311
R. L. Merlino
Affiliation:
Department of Physics and Astronomy, 203 Van Allen Hall, Iowa City, IA 52242-1479
M. Rosenberg
Affiliation:
Department of Electrical and Computer Engineering, 9500 Gilman Drive, Mail Code 0407, University of California, San Diego, La Jolla, CA 92093-0407
*
Email address for correspondence: [email protected]

Abstract

The magnetized dusty plasma experiment (MDPX) is a newly commissioned plasma device that started operations in late spring, 2014. The research activities of this device are focused on the study of the physics, highly magnetized plasmas, and magnetized dusty plasmas. The design of the MDPX device is centered on two main components: an open bore, superconducting magnet that is designed to produce, in a steady state, both uniform magnetic fields up to 4 Tesla and non-uniform magnetic fields with gradients of 1–2 T m−1 and a flexible, removable, octagonal vacuum chamber that provides substantial probe and optical access to the plasma. This paper will provide a review of the design criteria for the MDPX device, a description of the research objectives, and brief discussion of the research opportunities offered by this multi-institution, multi-user project.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. 2005 Twenty years of particle image velocimetry. Exp. Fluids 39, 159.Google Scholar
Barkan, A., D'Angelo, N. and Merlino, R. 1994 Charging of dust grains in a plasma. Phys. Rev. Lett. 73, 3093.Google Scholar
Barkan, A., Merlino, R. L. and D'Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 3563.Google Scholar
Carstensen, J., Greiner, F. and Piel, A. 2012 Ion-wake-mediated particle interaction in a magnetized-plasma flow. Phys. Rev. Lett. 109, 135001.Google Scholar
Chang, J. S. and Spariosu, K. 1993 Dust particle charging characteristics under a collisionless magneto-plasma. J. Phys. Soc. Japan 62, 97.Google Scholar
Chen, F. F. 2006 Introduction to Plasma Physics and Controlled Fusion, 2nd edn. Volume 1: Plasma Physics, New York, NY: Springer, p. 19.Google Scholar
Chu, J. H. and Lin, I., 1994 Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 4009.Google Scholar
Cianciosa, M. 2012 ‘Measurements and modifications of sheared flows and stability on the Compact Toroidal Hybrid stellarator', Ph.D. dissertation, Auburn University.Google Scholar
DaVis (Data Visualization). 2013 Software, Version 8.0, LaVision GmbH. Göttingen, Germany.Google Scholar
DeBleeker, K., Bogaerts, A. and Goedheer, W. 2005 Role of the thermophoretic force on the transport of nanoparticles in dusty silane plasmas. Phys. Rev. E 71, 066405.CrossRefGoogle Scholar
Deschenaux, Ch., Affolter, A., MAgni, D., Hollenstein, Ch. and Fayet, P. 1999 Investigations of CH4, C2H2 and C2H4 dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry. J. Phys. D: Appl. Phys. 32, 1876.Google Scholar
DuBois, A. M., Eadon, A. C. and Thomas, E. 2013 Electron-ion hybrid instability experiment upgrades to the Auburn linear experiment for instability studies. Rev. Sci. Instrum. 84, 043503.Google Scholar
Eadon, A. C., Tejero, E., DuBois, A. and Thomas, E. 2011 Upgrades to the Auburn linear experiment for instability studies. Rev. Sci. Instrum. 82, 063511.Google Scholar
Goertz, C. 1989 Dusty plasmas in the solar system. Rev. Geophys. and Space Phys. 27, 271.Google Scholar
Goertz, C. and Morfill, G. 1983 A model for the formation of spokes in Saturn's ring. Icarus 53, 219.Google Scholar
Goldston, R. J. and Rutherford, P. H. 1997 Introduction to Plasma Physics, London: Institute of Physics Publishing, p. 19.Google Scholar
Greiner, F., Carstensen, J., Köhler, N., Pilch, I., Ketelsen, H., Knish, S. and Piel, A. 2012 Imaging Mie ellipsometry: dynamics of nanodust clouds in an argon–acetylene plasma. Plasma Sources Sci. Technol. 21, 065005.Google Scholar
Gurnett, D., Grün, E., Gallagher, D., Kurth, W. and Scarf, F. 1983 Micron-sized particles detected near saturn by the voyager plasma wave instrument. Icarus 53, 236.Google Scholar
Hutchinson, I. H. 1990 Introduction to Plasma Diagnostics, Cambridge, UK: Cambridge University Press, p. 66.Google Scholar
Kaw, P. K., Nishikawa, K. and Sato, N. 2002 Rotation in collisional strongly coupled dusty plasmas in a magnetic field. Phys. Plasmas 9, 387.Google Scholar
Khrapak, S. A., Ivlev, A. V. and Morfill, G. E. 2004 Momentum transfer in complex plasmas. Phys. Rev. E 70, 056405.Google Scholar
Khrapak, S. A., Ivlev, A. V., Morfill, G. E. and Zhdanov, S. 2003 Scattering in the attractive yukawa potential in the limit of strong interaction. Phys. Rev. Lett. 90, 225002.Google Scholar
Kivelson, M. G. 1995 Physics of space plasmas. In: Introduction to Space Physics, (eds. Kivelson, M. G. and Russell, C. T.). Cambridge, UK: Cambridge University Press, p. 27.Google Scholar
Knist, S., Greiner, F., Biss, F. and Piel, A. 2011 Influence of negative ions on drift waves in a low-density Ar/O2-Plasma. Contrib. Plasma Phys. 51, 769.Google Scholar
Konopka, U., Morfill, G. E. and Ratke, L., 2000 Measurement of the interaction potential of microspheres in the sheath of a Rf discharge. Phys. Rev. Lett. 84, 891.Google Scholar
Konopka, U., Schwabe, M., Knapek, C., Kretschmer, M. and Morfill, G. E. 2005 Complex plasmas in strong magnetic field environments. In: New Vistas in Dusty Plasmas: 4th Int. Conf. on the Physics of Dusty Plasmas, (eds. Boufendi, L., Mikkian, M. and Shukla, P. K.), AIP Press, CP799 (Orleans, France), p. 181.Google Scholar
Langmuir, I., Found, C. and Dittmer, A. 1924 A new type of electric discharge: the streamer discharge. Science 60, 392.Google Scholar
Melzer, A., Klindworth, M. and Piel, A. 2001 Normal modes of 2D finite clusters in complex plasmas. Phys. Rev. Lett. 87, 115002.Google Scholar
Mestel, L. and Spitzer, L. Jr. 1956 Star formation in magnetic dust clouds. Mon. Not. R. Astron. Soc. 116, 503.Google Scholar
Mitchell, N., Bessette, D., Gallix, R., Jong, C., Knaster, J., Libeyre, P., Sborchia, C. and Simon, F. 2008 The ITER magnet system. IEEE Trans. Appl. Superconductivity 18, 435.Google Scholar
Miyamoto, K. 1987 Plasma Physics for Nuclear FusionRevised Edition, Cambridge, MA: The MIT Press, p. 12.Google Scholar
Nambu, M., Salimullah, M. and Bingham, R. 2001 Effect of a magnetic field on the wake potential in a dusty plasma with streaming ions. Phys. Rev. E 63, 056403.Google Scholar
Piel, A., Nosenko, V. and Goree, J. 2006 Laser-excited shear waves in solid and liquid two-dimensional dusty plasmas. Phys. Plasmas 13, 042104.Google Scholar
Pilch, I., Reichstein, T. and Piel, A. 2008 Torus-shaped dust clouds trapped in a magnetized anodic plasma. Phys. Plasmas 15, 103706.Google Scholar
Puttscher, M. and Melzer, A. 2014 Paramagnetic dust particles in rf-plasmas with weak external magnetic fields. New J. Phys. 16, 043026.Google Scholar
Rosenberg, M. 1993 Ion- and dust-acoustic instabilities in dusty plasmas. Planet. Space Sci. 41, 229.Google Scholar
Rosenberg, M., Merlino, R. and Shukla, P. K. 2011 On the possibility of refraction of dust acoustic waves. J. Plasma Phys. 77, 231.Google Scholar
Rynn, N. and D'Angelo, N. 1960 Device for generating a low temperature, highly ionized cesium plasma. Rev. Sci. Instrum. 31, 1326.Google Scholar
Salimullah, M., Torney, M., Shukla, P. K. and Banerjee, A. K. 2003 Three-dimensional wavefields in a magnetized dusty plasma with streaming ions. Phys. Scripta 67, 534.Google Scholar
Sato, N., Uchida, G., Kaneko, T., Shimizu, S. and Iizuka, S. 2001 Dynamics of fine particles in magnetized plasmas. Phys. Plasmas 8, 1786.Google Scholar
Schwabe, M., Konopka, U., Bandyopadhyay, P. and Morfill, G. E. 2011 Pattern formation in a complex plasma in high magnetic fields. Phys. Rev. Lett. 106, 215004.Google Scholar
Selwyn, G., McKillop, J., Haller, K. and Wu, J. 1990 In situ plasma contamination measurements by HeNe laser light scattering: a case study. J. Vac. Sci. Technol. A: Vacuum 8, 1726.Google Scholar
Selwyn, G., Singh, J. and Bennett, R. 1989 In situ laser diagnostic studies of plasma-generated particulate contamination. J. Vac. Sci. Technol. A: Vacuum 7, 2758.Google Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction Dusty Plasma Physics, London: Institute of Physics Publishing, p. 36.Google Scholar
Tadsen, B., Greiner, F. and Piel, A. 2014 Preparation of magnetized nanodusty plasmas in a radio frequency-driven parallel-plate reactor. Phys. Plasmas 21, 103704.Google Scholar
Thomas, E. 1999 Direct measurements of two-dimensional velocity profiles in direct current glow discharge dusty plasmas. Phys. Plasmas 6, 2672.Google Scholar
Thomas, E. Jr., Avinash, K. and Merlino, R. L. 2004 Probe induced voids in a dusty plasma. Phys. Plasmas 11, 1770.Google Scholar
Thomas, E. Jr., Merlino, R. L. and Rosenberg, M. 2012 Magnetized dusty plasmas: the next frontier for complex plasma research. Plasma Phys. Control. Fusion 54, 4034.Google Scholar
Thomas, E. and Watson, M. 2000 Charging of silica particles in an argon dusty plasma. Phys. Plasmas 7, 3194.Google Scholar
Thomas, E. Jr., Williams, J. D. and Silver, J. 2004 Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma. Phys. Plasmas 11, L37.Google Scholar
Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacker, B. and Mölmann, D. 1994 Plasma crystal: coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652.Google Scholar
Thompson, C., Barkan, A., D'Angelo, N. and Merlino, R. L. 1997 Dust acoustic waves in a direct current glow discharge. Phys. Plasmas 4, 2331.Google Scholar
Thompson, C. O., D'Angelo, N. and Merlino, R. L. 1999 The interaction of stationary and moving objects with dusty plasmas. Phys. Plasmas 6, 1421.Google Scholar
Trottenburg, T., Melzer, A. and Piel, A. 1995 Measurement of the electric charge on particulates forming Coulomb crystals in the sheath of a radiofrequency plasma. Plasma Sources Sci. Technol. 4, 450.Google Scholar
Tsytovich, V. N., Sato, N. and Morfill, G. E. 2003 Note on the charging and spinning of dust particles in complex plasmas in a strong magnetic field. New J. Phys. 5, 43.Google Scholar
Vasiliev, M. M., D'yachkov, L. G., Antipov, S. N., Huijink, R., Petrov, O. F. and Fortov, V. E. 2011 Dynamics of dust structures in a dc discharge under action of axial magnetic field. EPL: Europhys. Lett. 93, 15001.Google Scholar
Vasil'ev, M. M., D'yachkov, L. G., Antipov, S. N., Petrov, O. F. and Fortov, V. E. 2007 Dusty plasma structures in magnetic fields in a dc discharge. J. Exp. Theo. Phys. Lett. 86, 358.Google Scholar
Verplancke, Ph., Chodura, R., Noterdaeme, J.-M. and Weinlich, M. 1996 Characteristics of a Langmuir probe in a magnetic field with high sweep frequencies. Contrib. Plasma Phys. 36, S145.Google Scholar
Walch, B., Horányi, M. and Robertson, S. 1995 Charging of dust grains in plasma with energetic electrons. Phys. Rev. Lett. 75, 838.Google Scholar
Williams, J. and Thomas, E. Jr. 2006 Initial measurement of the kinetic dust temperature of a weakly coupled dusty plasma. Phys. Plasmas 13, 063509.Google Scholar