Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T05:03:45.285Z Has data issue: false hasContentIssue false

Magnetic-field generation by the ablative nonlinear Rayleigh–Taylor instability

Published online by Cambridge University Press:  03 December 2014

Philip M. Nilson*
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA Fusion Science Center, University of Rochester, Rochester, NY 14623, USA
L. Gao
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA Department of Mechanical Engineering, University of Rochester, Rochester, NY 14623, USA
I. V. Igumenshchev
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
G. Fiksel
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
R. Yan
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA Fusion Science Center, University of Rochester, Rochester, NY 14623, USA Department of Mechanical Engineering, University of Rochester, Rochester, NY 14623, USA
J. R. Davies
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA Fusion Science Center, University of Rochester, Rochester, NY 14623, USA Department of Mechanical Engineering, University of Rochester, Rochester, NY 14623, USA
D. Martinez
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
V. A. Smalyuk
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
M. G. Haines
Affiliation:
Department of Physics, Imperial College, London SW7 2AZ, United Kingdom
E. G. Blackman
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA Department of Physics, University of Rochester, Rochester, NY 14623, USA
D. H. Froula
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
R. Betti
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA Fusion Science Center, University of Rochester, Rochester, NY 14623, USA Department of Mechanical Engineering, University of Rochester, Rochester, NY 14623, USA Department of Physics, University of Rochester, Rochester, NY 14623, USA
D. D. Meyerhofer
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA Fusion Science Center, University of Rochester, Rochester, NY 14623, USA Department of Mechanical Engineering, University of Rochester, Rochester, NY 14623, USA Department of Physics, University of Rochester, Rochester, NY 14623, USA
*
Email address for correspondence: [email protected]

Abstract

Experiments reporting magnetic-field generation by the ablative nonlinear Rayleigh–Taylor (RT) instability are reviewed. The experiments show how large-scale magnetic fields can, under certain circumstances, emerge and persist in strongly driven laboratory and astrophysical flows at drive pressures exceeding one million times atmospheric pressure.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alon, U., Hecht, J., Mukamel, D. and Shvarts, D. 1994 Scale invariant mixing rates of hydrodynamically unstable interfaces. Phys. Rev. Lett. 72, 28672870.Google Scholar
Atzeni, S. 2004 The Physics of Inertial Fusion. Oxford: Clarendon.Google Scholar
Betti, R. and Sanz, J. 2006 Bubble acceleration in the ablative Rayleigh–Taylor instability. Phys. Rev. Lett. 97, 205 002.Google Scholar
Borghesi, M.et al. 2004 Multi-MeV proton source investigations in ultraintense laser-foil interactions. Phys. Rev. Lett. 92, 055 003.Google Scholar
Braginskii, S. I. 1965 Review of Plasma Physics. New York: Consultant Bureau.Google Scholar
Clark, E. L. 2001 PhD thesis, “Measurements of Energetic Particles from Ultra Intense Laser Plasma Interactions.” University of London.Google Scholar
Cowan, T. E.et al. 2004 Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204 801.Google Scholar
Dimotakis, P. E. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 6998.CrossRefGoogle Scholar
Drake, R. P. 2006 High-Energy-Density Physics, Springer/Berlin/Heidelberg.Google Scholar
Evans, R. G. 1986 The influence of self-generated magnetic fields on the Rayleigh–Taylor instability. Plasma Phys. Control. Fusion 28 (7), 1021.Google Scholar
Gao, L. 2014 Measurements of magnetohydrodynamic effects in ablatively-driven high energy density systems. PhD Thesis, University of Rochester, Rochester NY.Google Scholar
Gao, L.et al. 2013 Observation of self-similarity in the magnetic fields generated by the ablative nonlinear Rayleigh–Taylor instability. Phys. Rev. Lett. 110, 185 003.CrossRefGoogle ScholarPubMed
Gao, L.et al. 2012 Magnetic field generation by the Rayleigh–Taylor instability in laser-driven planar plastic targets. Phys. Rev. Lett. 109, 115 001.CrossRefGoogle ScholarPubMed
Haines, M. G. 1986 Magnetic-field generation in laser fusion and hot-electron transport. Can. J. Phys. 64 (8), 912919.Google Scholar
Igumenshchev, I. V., Marshall, F. J., Marozas, J. A., Smalyuk, V. A., Epstein, R., Goncharov, V. N., Collins, T. J. B., Sangster, T. C. and Skupsky, S. 2009 The effects of target mounts in direct-drive implosions on OMEGA. Phys. Plasmas 16 (8), 082 701.Google Scholar
Keller, D., Collins, T. J. B., Delettrez, J. A., McKenty, P. W., Radha, P. B., Whitney, B. and Moses, G. A. 1999 DRACO – A new multidimensional hydrocode. Bull. Am. Phys. Soc. 44, 37.Google Scholar
Knauer, J. P.et al. 2000 Single-mode, Rayleigh–Taylor growth-rate measurements on the OMEGA Laser System. Phys. Plasmas 7 (1), 338345.Google Scholar
Kugland, N. L., Ryutov, D. D., Plechaty, C., Ross, J. S. and Park, H.-S. 2012 Invited article: Relation between electric and magnetic field structures and their proton-beam images. Rev. Sci. Instrum. 83, 101 301.Google Scholar
Kulsrud, R. M. and Zweibel, E. G. 2008 On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71 (4), 046 901.Google Scholar
Lindl, J. 1995 Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2 (11), 39334024.CrossRefGoogle Scholar
Manuel, M. J.-E.et al. 2012 First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas. Phys. Rev. Lett. 108, 255 006.Google Scholar
LLE 1987 LLE Quarterly report. LLE Rev. 33, 110.Google Scholar
Mima, K., Tajima, T. and Leboeuf, J. N. 1978 Magnetic field generation by the Rayleigh–Taylor instability. Phys. Rev. Lett. 41, 17151719.CrossRefGoogle Scholar
Nishiguchi, A., Yabe, T. and Haines, M. G. 1985 Nernst effect in laser-produced plasmas. Phys. Fluids 28 (12), 36833690.CrossRefGoogle Scholar
Oron, D., Alon, U. and Shvarts, D. 1998 Scaling laws of the Rayleigh–Taylor ablation front mixing zone evolution in inertial confinement fusion. Phys. Plasmas 5 (5), 14671476.CrossRefGoogle Scholar
Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. and Shvarts, D. 2001 Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas 8 (6), 28832889.Google Scholar
Orszag, S. A. and Patterson, G. S. 1972 Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 7679.Google Scholar
Rayleigh, L. 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170.Google Scholar
Remington, B. A.et al. 1997 Supernova hydrodynamics experiments on the Nova laser. Phys. Plasmas 4 (5), 19942003.CrossRefGoogle Scholar
Sadot, O., Smalyuk, V. A., Delettrez, J. A., Meyerhofer, D. D., Sangster, T. C., Betti, R., Goncharov, V. N. and Shvarts, D. 2005 Observation of self-similar behavior of the 3D, nonlinear Rayleigh–Taylor instability. Phys. Rev. Lett. 95, 265 001.Google Scholar
Schneider, M. B., Dimonte, G. and Remington, B. 1998 Large and small scale structure in Rayleigh–Taylor mixing. Phys. Rev. Lett. 80, 35073510.Google Scholar
Smalyuk, V. A., Sadot, O., Delettrez, J. A., Meyerhofer, D. D., Regan, S. P. and Sangster, T. C. 2005 Fourier-space nonlinear Rayleigh–Taylor growth measurements of 3D laser-imprinted modulations in planar targets. Phys. Rev. Lett. 95, 215 001.Google Scholar
Srinivasan, B., Dimonte, G. and Tang, X.-Z. 2012 Magnetic field generation in Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Rev. Lett. 108, 165 002.Google Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. A 201, 192.Google Scholar
Vincent, L. and Soille, P. 1991 Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583.Google Scholar
Waxer, L. J.et al. 2005 High-energy petawatt capability for the Omega Laser. Opt. Photon. News 16 (7), 3036.Google Scholar
Wilks, S. C.et al. 2001 Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8 (2), 542549.CrossRefGoogle Scholar
Willingale, L.et al. 2009 Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett. 102, 125 002.Google Scholar
Zylstra, A. B.et al. 2012 Using high-intensity laser-generated energetic protons to radiograph directly driven implosions. Rev. Sci. Instrum. 83 (1), 013 511.Google Scholar