Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T14:48:02.407Z Has data issue: false hasContentIssue false

A magnetically tapered plasma density for overcoming electron dephasing

Published online by Cambridge University Press:  30 September 2011

C. M. WANG*
Affiliation:
School of Mechanical and Automotive Engineering, Hefei University of Technology, Postcode 230009, Hefei, China ([email protected])

Abstract

One of the main limitations of energy gain in laser wakefield accelerators is the electron dephasing, In order to resolve the dephasing problem, a tapered plasma channel is proposed and tested numerically. The tapered density is created by means of a laser heating, combining an axially increased external magnetic field. The locally strong magnetic field prevents the thermal energy transport crossing the field lines, and leads to a pressure buildup. The pressure gradient expels the plasma radially and tapers the density axially. A tapered plasma with a density contrast of 2.2 within a 6-cm channel is established. Propagating in the tapered plasma channel, the energy of an accelerated electron is expected to be enhanced greatly.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Taijma, T. and Dawson, J. 1979 Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
[2]Modena, A. et al. . 1995 Nature 377, 606.CrossRefGoogle Scholar
[3]Umstadter, D., Chen, S. Y., Maksimchuk, A., Mourou, G. and Wagner, R. 1996 Science 273, 472.CrossRefGoogle Scholar
[4]Moore, C. I., Ting, A., Krushelnick, K., Esarey, E., Hubbard, R. F., Hafizi, B., Burris, H. R., Manka, C. and Sprangle, P. 1997 Phys. Rev. Lett. 79, 3909.CrossRefGoogle Scholar
[5]Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M. M., Burgy, F., Cambaret, J. P., Chemin, J. F., Krushelnick, K., Malka, G., Mangles, S. P. D. 2002 Science 298, 1596.CrossRefGoogle Scholar
[6]Katsouleas, T., 1986 Phys. Rev. A 33, 2056.CrossRefGoogle Scholar
[7]Sprangle, P., Penano, J. R., Hafizi, B., Hubbard, R. F., Ting, A., Zigler, A. and Antonsen, T. M. 2002 Phys. Plasma 9, 2364.CrossRefGoogle Scholar
[8]Spence, D. J. and Hooker, S. M. 2000 Phys. Rev. E 63, 015401.Google Scholar
[9]Junck, K. L. and Getty, W. D. 1994 J. Vac. Sci. Technol. A 12, 2767.CrossRefGoogle Scholar
[10]Froula, D. H. et al. . 2007 Phys. Rev. Lett. 98, 135001.CrossRefGoogle Scholar
[11]Goedbloed, H. and Poedts, S. 2004 Principles of Magnetohydrodynamics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
[12]Duston, D. and Duderstadt, J. J. 1978 Phys. Rev. A 18, 1707.CrossRefGoogle Scholar
[13]Toth, G. and Odstrcil, D. 1996 J. Comput. Phys. 128, 82.CrossRefGoogle Scholar