Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T05:02:14.993Z Has data issue: false hasContentIssue false

Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics

Published online by Cambridge University Press:  13 March 2009

David Fyfe
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242
Glenn Joyce
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242
David Montgomery
Affiliation:
Advanced Study Program, National Center for Atmospheric Research, Boulder, Colorado 80303

Abstract

Two-dimensional magnetohydrodynamic turbulence is explored by means of numerical simulation. Previous analytical theory, based on non-dissipative constants of the motion in a truncated Fourier representation, is verified by following the evolution of highly non-equilibrium initial conditions numerically. Dynamo action (conversion of a significant fraction of turbulent kinetic energy into long-wavelength magnetic field energy) is observed. It is conjectured that in the presence of dissipation and external forcing; a dual cascade will be observed for zero-helicity situations. Energy will cascade to higher wavenumbers simultaneously with a cascade of mean square vector potential to lower wavenumbers, leading to an omni-directional magnetic energy spectrum which varies as k-⅓ at lower wavenumbers, simultaneously with a build-up of magnetic excitation at the lowest wavenumber of the system. Equipartition of kinetic and magnetic energies is expected at the highest wavenumbers in the system.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Frisch, U., Pouquet, A., Léorat, J. & Mazure, A. 1975 J. Fluid Mech. 68, 769.Google Scholar
Fyfe, D. & Montgomery, D. 1976 J. Plasma Phys. 16, 181.CrossRefGoogle Scholar
Grad, H. 1975 Proc. Nat. Acad. Sci. USA, 72, 3789.Google Scholar
Kit, L. G. & Tsinober, A. B. 1971 Magnetohydrodynamics 7, 312.Google Scholar
Kolmogoroff, A. N. 1941 C.R. Acad. Sci. U.S.S.R. 30, 301, 538.Google Scholar
Kraichnan, R. H. 1958 Phys. Rev. 109, 1407.CrossRefGoogle Scholar
Kraichnan, R. H. 1965 Phys. Fluids, 8, 1385.Google Scholar
Kraichnan, R. H. 1967 Phys. Fluids, 10, 1417.CrossRefGoogle Scholar
Kraichnan, R. H. 1973 J. Fluid Mech. 62, 305.CrossRefGoogle Scholar
Kraichnan, R. H. 1975 J. Fluid Mech. 67, 155.Google Scholar
Leith, C. E. 1968 Phys. Fluids, 11, 671.Google Scholar
Lilly, D. K. 1969 Phys. Fluids Suppl. II, 240.Google Scholar
Lilly, D. K. 1971 J. Fluid Mech. 45, 395.Google Scholar
Orszag, S. A. 1971 Stud. Appl. Math. 50, 293.CrossRefGoogle Scholar
Patterson, G. S. & Orszag, S. A. 1971 Phys. Fluids, 14, 2358.Google Scholar
Pouquet, A., Lesieur, M., Andre, J. C. & Basdevant, C. 1975 a J. Fluid Mech. 72, 305.Google Scholar
Pouquet, A., Frisch, U. & Léorat, J. 1975 b Strong helical turbulence and the nonlinear dynamo effect. Preprint, Observatoire de Nice. J. Fluid Mech. (to appear).Google Scholar
Pouquet, A. & Patterson, G. S. 1976 Numerical simulation of helical magnetohydro. dynamic turbulence. NCAR preprint.Google Scholar
RÄdler, K. H. 1968 Z. Naturforsch. 239, 1841, 1851.CrossRefGoogle Scholar
Salu, Y. & Knorr, G. 1975 J. Comp. Phys. 17, 68.CrossRefGoogle Scholar
Schumann, U. 1976 J. Fluid Mech. 74, 31.Google Scholar
Seyler, C. E., Salu, Y., Montgomery, D. & Knorr, G. 1975 Phys. Fluids, 18, 803.CrossRefGoogle Scholar
Steenbeck, M. & Krause, F. 1969 Astronom. Nachr. 29, 49, 271.Google Scholar
Wiin-Nielsen, A. 1967 Tellus, 19, 540.Google Scholar