Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T13:06:25.724Z Has data issue: false hasContentIssue false

Macroscopic electric fields driven by lower-hybrid turbulence and acceleration of thermal electrons in the foot of quasi-perpendicular shocks

Published online by Cambridge University Press:  13 March 2009

A. A. Galeev
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 103980, Heidelberg, Germany
M. A. Malkov
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 103980, Heidelberg, Germany
H. J. Völk
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 103980, Heidelberg, Germany

Abstract

A new mechanism is suggested that draws non-resonant thermal electrons into a higher-velocity range, where they can be effectively accelerated by waves. We argue that the acceleration of a small number of pre-existing resonant particles influences the dynamics of the bulk plasma and results in a macroscopic electric field. The solution for the spatial dependence of this electric field is obtained, and it appears to be a new type of electrostatic shock, which forms only in the presence of background turbulence. This field enriches the region of resonant particles with thermal electrons, which leads to a build-up of an excess of accelerated particles. The number of accelerated particles is calculated. This mechanism appears as a good candidate to explain electron acceleration in the foot of quasi-perpendicular shocks.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Breizman, B. N., Zakharov, V. E. & Musher, S. L. 1974 Soviet Phys. JETP 37, 658.Google Scholar
Feldman, W. C. 1985 Collisionless Shocks in the Heliosphere: Reviews of Current Research (ed. Stone, R. G. & Tsurutani, B. T.), pp. 195205. Geophysical Monograph 35, American Geophysical Union.CrossRefGoogle Scholar
Feldman, W. C., Bame, S. J., Gary, S. P., Gosling, J. T., McComas, D., Thomsen, M. F., Paschmann, G., Sckopke, N., Hoppe, M. M. & Russel, C. T. 1982 Phys. Rev. Lett. 49, 199.CrossRefGoogle Scholar
Galeev, A. A. 1984 Soviet Phys. JETP 86, 1655.Google Scholar
Galeev, A. A. 1985 Soviet Astron. Lett. 11, 181.Google Scholar
Goodrich, C. C. 1985 Collisionless Shocks in the Heliosphere: Reviews of Current Research (ed. Stone, R. G. & Tsurutani, B. T.) pp. 153168. Geophysical Monograph 35, American Geophysical Union.CrossRefGoogle Scholar
Kadomtsev, B. B. & Pogutes, O. P. 1967 Soviet Phys. JETP 53, 2025.Google Scholar
Leroy, M. M., Winske, D., Goodrich, C. C, Wu, C. S. & Papadopoulos, K. 1982 J. Geophys. Res. 87, 5081.CrossRefGoogle Scholar
Papadopoulos, K. 1981 Plasma Astrophysics, p. 145. ESA SP-161.Google Scholar
Sagdeev, R. Z. 1966 Reviews of Plasma Physis (ed. Leontovich, M. A.), p. 23. Consultants Bureau, New York.Google Scholar
Sckopke, N. G., Paschmann, G., Bame, S. J., Gosling, J. T. & Russel, C. T. 1983 J. Geophys. Res. 88, 6121.CrossRefGoogle Scholar
Shapiro, V. D. & Shevchenko, V. I. 1968 Soviet Phys. JETP 54, 1187.Google Scholar
Thomsen, M. F., Barr, H. C., Gary, S. P., Feldman, W. C. & Cole, T. E. 1983 J. Geophys. Res. 88, 3035.CrossRefGoogle Scholar
Tsytovich, V. N. 1967 Nonlinear Phenomena in Plasma. Nauka, Moscow (in Russian).Google Scholar
Vaisbero, O. L., Galeev, A. A., Zastenker, G. N., Klimov, S. I., Nozdrachev, M. N., Sagdeev, R. Z., Sokolov, A. Yu. & Shapiro, V. D. 1983 Soviet Phys. JETP 85, 716.Google Scholar