Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T02:46:08.906Z Has data issue: false hasContentIssue false

Low-power radio-frequency excitation as a plasma source in a Penning–Malmberg trap: a systematic study

Published online by Cambridge University Press:  13 July 2015

G. Maero*
Affiliation:
Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
S. Chen
Affiliation:
INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
R. Pozzoli
Affiliation:
Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
M. Romé
Affiliation:
Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
*
Email address for correspondence: [email protected]

Abstract

A novel method was experimentally demonstrated to produce a low-density electron plasma in a Penning–Malmberg trap, exploiting the static electric and magnetic confinement fields together with a periodic excitation with amplitudes as low as 0.5–5 V and frequencies in the MHz range. This unusual technique proved to be applicable as a replacement for conventional electron sources in Penning devices and presents interesting aspects both in terms of basic science and technological applications. Nevertheless, the experimental observations demonstrate the high sensitivity of plasma features of interest (charge, mean density and density distribution) to the experimental conditions, namely trap configuration and excitation parameters, and as a consequence clear trends have not been identified so far. We present an experimental campaign of measurements where several parameters were systematically changed leading to a better assessment of the plasma production mechanism and to the identification of common trends.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghion, S., Ahlen, O., Amsler, C., Ariga, A., Ariga, T., Belov, A. S., Berggren, K., Bonomi, G., Braunig, P., Brusa, R. S., Cabaret, L., Canali, C., Caravita, R., Castelli, F., Cerchiari, G., Cialdi, S., Comparat, D., Consolati, G., Derking, H., Di Domizio, S., Di Noto, L., Doser, M., Dudarev, A., Ereditato, A., Ferragut, R., Fontana, A., Genova, P., Giammarchi, M., Gligorova, A., Gninenko, S. N., Haider, S., Huse, T., Jordan, E., Jorgensen, L. V., Kaltenbacher, T., Kawada, J., Kellerbauer, A., Lagomarsino, V., Lehner, S., Magnani, A., Malbrunot, C., Mariazzi, S., Matveev, V. A., Moia, F., Nebbia, G., Nedelec, P., Oberthaler, M. K., Pacifico, N., Petracek, V., Pistillo, C., Prelz, F., Prevedelli, M., Regenfus, C., Riccardi, C., Rohne, O., Rotondi, A., Sandaker, H., Scampoli, P., Storey, J., Vasquez, M. A. S., Spacek, M., Testera, G., Vaccarone, R., Widmann, E., Zavatarelli, S. & Zmeskal, J. 2014 A moiré deflectometer for antimatter. Nat. Commun. 5, 16.CrossRefGoogle ScholarPubMed
Amster, I. J. 1996 Fourier transform mass spectrometry. J. Mass Spectrom. 31, 13251337.Google Scholar
Andresen, G. B., Ashkezari, M. D., Baquero-Ruiz, M., Bertsche, W., Bowe, P. D., Butler, E., Cesar, C. L., Charlton, M., Deller, A., Eriksson, S., Fajans, J., Friesen, T., Fujiwara, M. C., Gill, D. R., Gutierrez, A., Hangst, J. S., Hardy, W. N., Hayano, R. S., Hayden, M. E., Humpries, A. J., Hydomako, R., Jonsell, S., Kemp, S. L., Kurchaninov, L., Madsen, N., Menary, S., Nolan, P., Olchanski, K., Olin, A., Pusa, A., Rasmussen, C. O., Robicheaux, F., Sarid, E., Silveira, D. M., So, C., Storey, J. W., Thomson, R. I., van der Werf, D. P., Wurtele, J. S. & Yamazaki, Y. 2011 Confinement of antihydrogen for 1000 s. Nat. Phys. 7, 558564.Google Scholar
Audi, M. & de Simon, M. 1987 Ion pumps. Vacuum 37, 629636.Google Scholar
Bettega, G., Cavaliere, F., Cavenago, M., Illiberi, A., Pozzoli, R. & Romé, M. 2005 Experimental investigation of the ion resonance instability in a trapped electron plasma. Plasma Phys. Control. Fusion 47, 16971708.Google Scholar
Bettega, G., Cavaliere, F., Illiberi, A., Pozzoli, R., Romé, M., Cavenago, M. & Tsidulko, Yu. 2004 Experimental investigation of coherent structures in a low-energy electron beam. Appl. Phys. Lett. 84, 38073809.Google Scholar
Blaum, K. 2006 High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 178.Google Scholar
Block, M., Ackermann, D., Blaum, K., Chaudhuri, A., Di, Z., Eliseev, S., Ferrer, R., Habs, D., Herfurth, F., Hessberger, F. P., Hofmann, S., Kluge, H.-J., Maero, G., Martín, A., Marx, G., Mazzocco, M., Mukherjee, M., Neumayr, J. B., Plass, W. R., Quint, W., Rahaman, S., Rauth, C., Rodriguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Vorobjev, G. & Weber, C. 2006 Mass measurements in the endpoint region of the rp-process at SHIPTRAP. Hyperfine Interact. 173, 133142.Google Scholar
Brown, L. S. & Gabrielse, G. 1986 Geonium theory: physics of a single electron or ion a Penning trap. Rev. Mod. Phys. 58, 233311.Google Scholar
Coppa, G. G. M., D’Angola, A. & Mulas, R. 2012 Analysis of electron dynamics in non-ideal Penning traps. Phys. Plasmas 19, 062507.Google Scholar
Davidson, R. C. 1990 An Introduction to the Physics of Nonneutral Plasmas. Addison-Wesley.Google Scholar
Driscoll, C. F. & Fine, K. S. 1990 Experiments on vortex dynamics in pure electron plasmas. Phys. Fluids B 2, 13591366.Google Scholar
Driscoll, C. F., Fine, K. S. & Malmberg, J. H. 1986 Reduction of radial losses in a pure electron plasma. Phys. Fluids 29, 20152017.Google Scholar
Durkin, D. & Fajans, J. 2000 Experiments on two-dimensional vortex patterns. Phys. Fluids 12 (2), 289293.Google Scholar
Fajans, J. 1993 Transient ion resonance instability. Phys. Fluids B 5 (9), 31273135.Google Scholar
Fajans, J. 1999 Lifetime scaling in non-neutral plasmas. Commun. Mod. Phys. 1, 123.Google Scholar
Gabrielse, G., Bowden, N. S., Oxley, P., Speck, A., Storry, C. H., Tan, J. N., Wessels, M., Grzonka, D., Oelert, W., Schepers, G., Sefzick, T., Walz, J., Pittner, H., Hänsch, T. W. & Hessels, E. A. 2002 Background-free observation of cold antihydrogen with field-ionization analysis of its states. Phys. Rev. Lett. 89, 213401.Google Scholar
Herfurth, F., Blaum, K., Eliseev, S., Kester, O., Kluge, H.-J., Koszudowski, S., Kozhuharov, C., Maero, G., Neidherr, D., Quint, W., Schwarz, S., Stahl, S. & Vorobjev, G. 2006 The HITRAP project at GSI: trapping and cooling of highly-charged ions in a Penning trap. Hyperfine Interact. 173, 93101.Google Scholar
Huang, X.-P., Anderegg, F., Hollmann, E. M., Driscoll, C. F. & O’Neil, T. M. 1997 Steady-state confinement of non-neutral plasmas by rotating electric fields. Phys. Rev. Lett. 78, 875878.CrossRefGoogle Scholar
Kabantsev, A. A., Chim, C. Y., O’Neil, T. M. & Driscoll, C. F. 2014 Diocotron and Kelvin mode damping from a flux through the critical layer. Phys. Rev. Lett. 112, 115003.Google Scholar
Kabantsev, A. A. & Driscoll, C. F. 2004 Fast measurement of picoamp plasma flows using trapped electron clouds. Rev. Sci. Instrum. 75, 36283630.Google Scholar
Lepreti, F., Romé, M., Maero, G., Paroli, B., Pozzoli, R. & Carbone, V. 2013 Scaling properties and intermittency of two-dimensional turbulence in pure electron plasmas. Phys. Rev. E 87, 063110.Google Scholar
Lichtenberg, A. J. & Lieberman, M. A. 1983 Regular and Stochastic Motion. Springer.Google Scholar
Lieberman, M. A. & Godyak, V. A. 1998 From Fermi acceleration to collisionless discharge heating. IEEE Trans. Plasma Sci. 26, 955986.Google Scholar
Maero, G., Herfurth, F., Kluge, H.-J., Schwarz, S. & Zwicknagel, G. 2012 Numerical investigations on resistive cooling of trapped highly charged ions. Appl. Phys. B 18, 10871096.Google Scholar
Maero, G., Paroli, B., Pozzoli, R. & Romé, M. 2011 Stabilizing effect of a nonresonant radio frequency drive on the m=1 diocotron instability. Eur. Phys. J. D 18, 032101.Google Scholar
Maero, G., Romé, M., Lepreti, F. & Cavenago, M. 2014 Numerical study of a dust-contaminated electron plasma. Eur. Phys. J. D 68, 111.CrossRefGoogle Scholar
Maggiore, M., Cavenago, M., Comunian, M., Chirulotto, F., Galatà, A., De Lazzari, M., Porcellato, A. M., Roncolato, C., Stark, S., Caruso, A., Longhitano, A., Cavaliere, F., Maero, G., Paroli, B., Pozzoli, R. & Romé, M. 2014 Plasma-beam traps and radiofrequency quadrupole beam coolers. Rev. Sci. Instrum. 85, 02B909.Google Scholar
Malmberg, J. H. & deGrassie, J. S. 1975 Properties of nonneutral plasma. Phys. Rev. Lett. 35, 577580.Google Scholar
Paroli, B., Bettega, G., Maero, G., Romé, M., Norgia, M., Pesatori, A. & Svelto, C. 2010a Electrostatic diagnostics of nanosecond pulsed electron beams in a Malmberg–Penning trap. Rev. Sci. Instrum. 81, 063503.CrossRefGoogle Scholar
Paroli, B., Cavaliere, F., Cavenago, M., de Luca, F., Ikram, M., Maero, G., Marini, C., Pozzoli, R. & Romé, M. 2012 Thomson backscattering diagnostic set-up for the study of nanosecond electron bunches in high space-charge regime. J. Inst. 7, P01008.Google Scholar
Paroli, B., De Luca, F., Maero, G., Pozzoli, R. & Romé, M. 2010b Broadband radio frequency plasma generation in a Penning–Malmberg trap. Plasma Sources Sci. Technol. 19, 045013.Google Scholar
Paroli, B., Maero, G., Pozzoli, R. & Romé, M. 2014 Diocotron modulation in an electron plasma through continuous radio-frequency excitation. Phys. Plasmas 21, 122102.Google Scholar
Pierce, J. R. 1949 Theory and Design of Electron Beams. D. Van Nostrand.Google Scholar
Romé, M., Chen, S., Maero, G., Paroli, B. & Pozzoli, R.2015 Trapped electron plasma formation and equilibrium with a low-power radio-frequency drive. In Non-Neutral Plasma Physics IX: 11th International Workshop on Non-Neutral Plasmas, AIP Conf. Proc. (accepted for publication).Google Scholar
Romé, M. & Lepreti, F. 2011 Turbulence and coherent structures in non-neutral plasmas. Eur. Phys. J. Plus 126, 117.Google Scholar
Saitoh, H., Pedersen, T. S., Hergenhahn, U., Stenson, E. V., Paschkowski, N. & Hugenschmidt, C. 2014 Recent status of a positron-electron experiment (APEX). In 13th International Workshop on Slow Positron Beam Techniques and Applications (SLOPOS13), Journal of Physics Conference Series, vol. 505, p. 012045. IOP Publishing.Google Scholar
Wang, Z., Lichtenberg, J. & Cohen, R. H. 2012 Kinetic theory of stochastically heated RF capacitive discharges. IEEE Trans. Plasma Sci. 26, 5968.Google Scholar