Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T04:44:00.523Z Has data issue: false hasContentIssue false

Long-term dynamics driven by resonant wave–particle interactions: from Hamiltonian resonance theory to phase space mapping

Published online by Cambridge University Press:  31 March 2021

Anton V. Artemyev*
Affiliation:
Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, CA90095, USA Space Research Institute of the Russian Academy of Sciences (IKI), 84/32 Profsoyuznaya Str., Moscow117997, Russia
Anatoly I. Neishtadt
Affiliation:
Space Research Institute of the Russian Academy of Sciences (IKI), 84/32 Profsoyuznaya Str., Moscow117997, Russia Department of Mathematical Sciences, Loughborough University, LoughboroughLE11 3TU, UK
Alexei. A. Vasiliev
Affiliation:
Space Research Institute of the Russian Academy of Sciences (IKI), 84/32 Profsoyuznaya Str., Moscow117997, Russia
Xiao-Jia Zhang
Affiliation:
Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, CA90095, USA
Didier Mourenas
Affiliation:
Laboratoire Matière sous Conditions Extrêmes, Paris-Saclay University, CEA, Bruyères-le-Châtel91190, France
Dmitri Vainchtein
Affiliation:
Space Research Institute of the Russian Academy of Sciences (IKI), 84/32 Profsoyuznaya Str., Moscow117997, Russia Nyheim Plasma Institute, Drexel University, Camden, NJ08103, USA
*
Email address for correspondence: [email protected]

Abstract

In this study we consider the Hamiltonian approach for the construction of a map for a system with nonlinear resonant interaction, including phase trapping and phase bunching effects. We derive basic equations for a single resonant trajectory analysis and then generalize them into a map in the energy/pitch-angle space. The main advances of this approach are the possibility of considering effects of many resonances and to simulate the evolution of the resonant particle ensemble on long time ranges. For illustrative purposes we consider the system with resonant relativistic electrons and field-aligned whistler-mode waves. The simulation results show that the electron phase space density within the resonant region is flattened with reduction of gradients. This evolution is much faster than the predictions of quasi-linear theory. We discuss further applications of the proposed approach and possible ways for its generalization.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agapitov, O. V., Artemyev, A., Krasnoselskikh, V., Khotyaintsev, Y. V., Mourenas, D., Breuillard, H., Balikhin, M. & Rolland, G. 2013 Statistics of whistler mode waves in the outer radiation belt: cluster STAFF-SA measurements. J. Geophys. Res. 118, 34073420.CrossRefGoogle Scholar
Agapitov, O. V., Artemyev, A., Mourenas, D., Krasnoselskikh, V., Bonnell, J., Le Contel, O., Cully, C. M. & Angelopoulos, V. 2014 The quasi-electrostatic mode of chorus waves and electron nonlinear acceleration. J. Geophys. Res. 119, 16061626.CrossRefGoogle Scholar
Agapitov, O. V., Artemyev, A. V., Mourenas, D., Mozer, F. S. & Krasnoselskikh, V. 2015 a Empirical model of lower band chorus wave distribution in the outer radiation belt. J. Geophys. Res. 120, 10.CrossRefGoogle Scholar
Agapitov, O. V., Artemyev, A. V., Mourenas, D., Mozer, F. S. & Krasnoselskikh, V. 2015 b Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt. Geophys. Res. Lett. 42, 10.Google Scholar
Albert, J. M. 1993 Cyclotron resonance in an inhomogeneous magnetic field. Phys. Fluids B 5, 27442750.CrossRefGoogle Scholar
Albert, J. M. 2001 Comparison of pitch angle diffusion by turbulent and monochromatic whistler waves. J. Geophys. Res. 106, 84778482.CrossRefGoogle Scholar
Albert, J. M. 2010 Diffusion by one wave and by many waves. J. Geophys. Res. 115.CrossRefGoogle Scholar
Albert, J. M., Starks, M. J., Horne, R. B., Meredith, N. P. & Glauert, S. A. 2016 Quasi-linear simulations of inner radiation belt electron pitch angle and energy distributions. Geophys. Res. Lett. 43, 23812388.CrossRefGoogle Scholar
Albert, J. M., Tao, X. & Bortnik, J. 2013 Aspects of nonlinear wave-particle interactions. In Dynamics of the Earth's Radiation Belts and Inner Magnetosphere (ed. D. Summers, I. U. Mann, D. N. Baker & M. Schulz). American Geophysical Union.CrossRefGoogle Scholar
Allanson, O., Watt, C. E. J., Ratcliffe, H., Allison, H. J., Meredith, N. P., Bentley, S. N., Ross, J. P. J. & Glauert, S. A. 2020 Particle-in-cell experiments examine electron diffusion by whistler-mode waves: 2. Quasi-linear and nonlinear dynamics. J. Geophys. Res. (Space Phys.) 125 (7), e27949.Google Scholar
Andronov, A. A. & Trakhtengerts, V. Y. 1964 Kinetic instability of the earth's outer radiation belt. Geomagn. Aeron. 4, 233242.Google Scholar
Arnold, V. I., Kozlov, V. V. & Neishtadt, A. I. 2006 Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer-Verlag.CrossRefGoogle Scholar
Artemyev, A. V., Agapitov, O., Mourenas, D., Krasnoselskikh, V., Shastun, V. & Mozer, F. 2016 a Oblique whistler-mode waves in the earth's inner magnetosphere: energy distribution, origins, and role in radiation belt dynamics. Space Sci. Rev. 200 (1–4), 261355.CrossRefGoogle Scholar
Artemyev, A. V., Neishtadt, A. I., Vainchtein, D. L., Vasiliev, A. A., Vasko, I. Y. & Zelenyi, L. M. 2018 a Trapping (capture) into resonance and scattering on resonance: summary of results for space plasma systems. Commun. Nonlinear Sci. Numer. Simul. 65, 111160.CrossRefGoogle Scholar
Artemyev, A. V., Neishtadt, A. I. & Vasiliev, A. A. 2019 a Kinetic equation for nonlinear wave-particle interaction: solution properties and asymptotic dynamics. Phys. D Nonlinear Phenom. 393, 18. arXiv:1809.03743CrossRefGoogle Scholar
Artemyev, A. V., Neishtadt, A. I. & Vasiliev, A. A. 2020 a A map for systems with resonant trappings and scatterings. Regular Chaotic Dyn. 25 (1), 210.CrossRefGoogle Scholar
Artemyev, A. V., Neishtadt, A. I. & Vasiliev, A. A. 2020 b Mapping for nonlinear electron interaction with whistler-mode waves. Phys. Plasmas 27 (4), 042902. arXiv:1911.11459CrossRefGoogle Scholar
Artemyev, A. V., Neishtadt, A. I., Vasiliev, A. A. & Mourenas, D. 2016 b Kinetic equation for nonlinear resonant wave-particle interaction. Phys. Plasmas 23 (9), 090701.CrossRefGoogle Scholar
Artemyev, A. V., Neishtadt, A. I., Vasiliev, A. A. & Mourenas, D. 2017 Probabilistic approach to nonlinear wave-particle resonant interaction. Phys. Rev. E 95 (2), 023204.CrossRefGoogle ScholarPubMed
Artemyev, A. V., Neishtadt, A. I., Vasiliev, A. A. & Mourenas, D. 2018 b Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves. J. Plasma Phys. 84, 905840206.CrossRefGoogle Scholar
Artemyev, A. V., Neishtadt, A. I., Zelenyi, L. M. & Vainchtein, D. L. 2010 Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves. Chaos 20 (4), 043128.CrossRefGoogle ScholarPubMed
Artemyev, A. V., Vasiliev, A. A., Mourenas, D., Agapitov, O. & Krasnoselskikh, V. 2013 Nonlinear electron acceleration by oblique whistler waves: Landau resonance vs. cyclotron resonance. Phys. Plasmas 20, 122901.CrossRefGoogle Scholar
Artemyev, A. V., Vasiliev, A. A., Mourenas, D., Agapitov, O. V. & Krasnoselskikh, V. V. 2014 a Electron scattering and nonlinear trapping by oblique whistler waves: the critical wave intensity for nonlinear effects. Phys. Plasmas 21 (10), 102903.CrossRefGoogle Scholar
Artemyev, A. V., Vasiliev, A. A., Mourenas, D., Agapitov, O., Krasnoselskikh, V., Boscher, D. & Rolland, G. 2014 b Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves. Geophys. Res. Lett. 41, 57275733.CrossRefGoogle Scholar
Artemyev, A. V., Vasiliev, A. A., Mourenas, D., Neishtadt, A. I., Agapitov, O. V. & Krasnoselskikh, V. 2015 Probability of relativistic electron trapping by parallel and oblique whistler-mode waves in earth's radiation belts. Phys. Plasmas 22 (11), 112903.CrossRefGoogle Scholar
Artemyev, A. V., Vasiliev, A. A. & Neishtadt, A. I. 2019 b Charged particle nonlinear resonance with localized electrostatic wave-packets. Commun. Nonlinear Sci. Numer. Simul. 72, 392406.Google Scholar
Balikhin, M. A., de Wit, T. D., Alleyne, H. S. C. K., Woolliscroft, L. J. C., Walker, S. N., Krasnosel'skikh, V., Mier-Jedrzejeowicz, W. A. C. & Baumjohann, W. 1997 Experimental determination of the dispersion of waves observed upstream of a quasi-perpendicular shock. Geophys. Res. Lett. 24, 787790.CrossRefGoogle Scholar
Bell, T. F. 1984 The nonlinear gyroresonance interaction between energetic electrons and coherent VLF waves propagating at an arbitrary angle with respect to the earth's magnetic field. J. Geophys. Res. 89, 905918.CrossRefGoogle Scholar
Benkadda, S., Sen, A. & Shklyar, D. R. 1996 Chaotic dynamics of charged particles in the field of two monochromatic waves in a magnetized plasma. Chaos 6 (3), 451460.CrossRefGoogle Scholar
Borovsky, J. E., Delzanno, G. L., Dors, E. E., Thomsen, M. F., Sanchez, E. R., Henderson, M. G., Marshall, R. A., Gilchrist, B. E., Miars, G., Carlsten, B. E., et al. 2020 Solving the auroral-arc-generator question by using an electron beam to unambiguously connect critical magnetospheric measurements to auroral images. J. Atmos. Sol.-Terr. Phys. 206, 105310.CrossRefGoogle Scholar
Camporeale, E. & Zimbardo, G. 2015 Wave-particle interactions with parallel whistler waves: nonlinear and time-dependent effects revealed by particle-in-cell simulations. Phys. Plasmas 22 (9), 092104. arXiv:1412.3229CrossRefGoogle Scholar
Carlsten, B. E., Colestock, P. L., Cunningham, G. S., Delzanno, G. L., Dors, E. E., Holloway, M. A., Jeffery, C. A., Lewellen, J. W., Marksteiner, Q. R., Nguyen, D. C., et al. 2019 Radiation-belt remediation using space-based antennas and electron beams. IEEE Trans. Plasma Sci. 47 (5), 20452063.CrossRefGoogle Scholar
Cattell, C. A., Breneman, A. W., Thaller, S. A., Wygant, J. R., Kletzing, C. A. & Kurth, W. S. 2015 Van Allen probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: statistical study. Geophys. Res. Lett. 42, 72737281.CrossRefGoogle Scholar
Cattell, C., Wygant, J. R., Goetz, K., Kersten, K., Kellogg, P. J., von Rosenvinge, T., Bale, S. D., Roth, I., Temerin, M., Hudson, M. K., et al. 2008 Discovery of very large amplitude whistler-mode waves in earth's radiation belts. Geophys. Res. Lett. 35, 1105.CrossRefGoogle Scholar
Chaston, C. C., Salem, C., Bonnell, J. W., Carlson, C. W., Ergun, R. E., Strangeway, R. J. & McFadden, J. P. 2008 The turbulent Alfvénic aurora. Phys. Rev. Lett. 100 (17), 175003.CrossRefGoogle ScholarPubMed
Chen, L., Breneman, A. W., Xia, Z. & Zhang, X.-J. 2020 Modeling of bouncing electron microbursts induced by ducted chorus waves. Geophys. Res. Lett. 47 (17), e89400.CrossRefGoogle Scholar
Chen, L., Zhu, H. & Zhang, X. 2019 Wavenumber analysis of EMIC waves. Geophys. Res. Lett. 46 (11), 56895697.CrossRefGoogle Scholar
Chirikov, B. V. 1979 A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263379.CrossRefGoogle Scholar
Crabtree, C., Tejero, E., Ganguli, G., Hospodarsky, G. B. & Kletzing, C. A. 2017 Bayesian spectral analysis of chorus subelements from the Van Allen Probes. J. Geophys. Res. (Space Phys.) 122 (6), 60886106.CrossRefGoogle Scholar
Cully, C. M., Angelopoulos, V., Auster, U., Bonnell, J. & Le Contel, O. 2011 Observational evidence of the generation mechanism for rising-tone chorus. Geophys. Res. Lett. 38, 1106.CrossRefGoogle Scholar
Cully, C. M., Bonnell, J. W. & Ergun, R. E. 2008 THEMIS observations of long-lived regions of large-amplitude whistler waves in the inner magnetosphere. Geophys. Res. Lett. 35, 17.CrossRefGoogle Scholar
Demekhov, A. G. 2011 Generation of VLF emissions with the increasing and decreasing frequency in the magnetosperic cyclotron maser in the backward wave oscillator regime. Radiophys. Quant. Electron. 53, 609622.CrossRefGoogle Scholar
Demekhov, A. G., Trakhtengerts, V. Y., Rycroft, M. J. & Nunn, D. 2006 Electron acceleration in the magnetosphere by whistler-mode waves of varying frequency. Geomagn. Aeron. 46, 711716.CrossRefGoogle Scholar
Demekhov, A. G., Trakhtengerts, V. Y., Rycroft, M. & Nunn, D. 2009 Efficiency of electron acceleration in the earth's magnetosphere by whistler mode waves. Geomagn. Aeron. 49, 2429.CrossRefGoogle Scholar
Drozdov, A. Y., Shprits, Y. Y., Orlova, K. G., Kellerman, A. C., Subbotin, D. A., Baker, D. N., Spence, H. E. & Reeves, G. D. 2015 Energetic, relativistic, and ultrarelativistic electrons: comparison of long-term VERB code simulations with Van Allen Probes measurements. J. Geophys. Res. 120, 35743587.CrossRefGoogle Scholar
Drummond, W. E. & Pines, D. 1962 Nonlinear stability of plasma oscillations. Nucl. Fusion Suppl. 3, 10491058.Google Scholar
Foster, J. C., Erickson, P. J., Baker, D. N., Claudepierre, S. G., Kletzing, C. A., Kurth, W., Reeves, G. D., Thaller, S. A., Spence, H. E., Shprits, Y. Y., et al. 2014 Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations. Geophys. Res. Lett. 41, 2025.CrossRefGoogle Scholar
Furuya, N., Omura, Y. & Summers, D. 2008 Relativistic turning acceleration of radiation belt electrons by whistler mode chorus. J. Geophys. Res. 113, 4224.CrossRefGoogle Scholar
Gan, L., Li, W., Ma, Q., Albert, J. M., Artemyev, A. V. & Bortnik, J. 2020 a Nonlinear interactions between radiation belt electrons and chorus waves: dependence on wave amplitude modulation. Geophys. Res. Lett. 47 (4), e85987.CrossRefGoogle Scholar
Gan, L., Li, W., Ma, Q., Artemyev, A. V. & Albert, J. M. 2020 b Unraveling the formation mechanism for the bursts of electron butterfly distributions: test particle and quasilinear simulations. Geophys. Res. Lett. 47 (21), e90749.CrossRefGoogle Scholar
Gelfreich, V., Rom-Kedar, V., Shah, K. & Turaev, D. 2011 Robust exponential acceleration in time-dependent billiards. Phys. Rev. Lett. 106 (7), 074101.CrossRefGoogle ScholarPubMed
Grach, V. S. & Demekhov, A. G. 2018 Resonance interaction of relativistic electrons with ion-cyclotron waves. I. Specific features of the nonlinear interaction regimes. Radiophys. Quant. Electron. 60 (12), 942959.CrossRefGoogle Scholar
Grach, V. S. & Demekhov, A. G. 2020 Precipitation of relativistic electrons under resonant interaction with electromagnetic ion cyclotron wave packets. J. Geophys. Res. (Space Phys.) 125 (2), e27358.Google Scholar
He, Z., Yan, Q., Zhang, X., Yu, J., Ma, Y., Cao, Y. & Cui, J. 2020 Precipitation loss of radiation belt electrons by two-band plasmaspheric hiss waves. J. Geophys. Res. (Space Phys.) 125, e2020JA028157.Google Scholar
Hiraga, R. & Omura, Y. 2020 Acceleration mechanism of radiation belt electrons through interaction with multi-subpacket chorus waves. Earth Planet. Space 72 (1), 21.CrossRefGoogle Scholar
Hsieh, Y.-K., Kubota, Y. & Omura, Y. 2020 Nonlinear evolution of radiation belt electron fluxes interacting with oblique whistler mode chorus emissions. J. Geophys. Res.: Space Phys. e2019JA027465.Google Scholar
Hsieh, Y.-K. & Omura, Y. 2017 a Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere. J. Geophys. Res. 122, 675694.CrossRefGoogle Scholar
Hsieh, Y.-K. & Omura, Y. 2017 b Study of wave-particle interactions for whistler mode waves at oblique angles by utilizing the gyroaveraging method. Radio Sci. 52 (10), 12681281.CrossRefGoogle Scholar
Isliker, H., Vlahos, L. & Constantinescu, D. 2017 Fractional transport in strongly turbulent plasmas. Phys. Rev. Lett. 119 (4), 045101. arXiv:1707.01526CrossRefGoogle ScholarPubMed
Itin, A. P. & Neishtadt, A. I. 2012 Fermi acceleration in time-dependent rectangular billiards due to multiple passages through resonances. Chaos 22 (2), 026119. arXiv:1112.3472CrossRefGoogle ScholarPubMed
Itin, A. P., Neishtadt, A. I. & Vasiliev, A. A. 2000 Captures into resonance and scattering on resonance in dynamics of a charged relativistic particle in magnetic field and electrostatic wave. Phys. D: Nonlinear Phenom. 141, 281296.CrossRefGoogle Scholar
Karimabadi, H., Akimoto, K., Omidi, N. & Menyuk, C. R. 1990 Particle acceleration by a wave in a strong magnetic field - regular and stochastic motion. Phys. Fluids B 2, 606628.CrossRefGoogle Scholar
Karpman, V. I. 1974 Nonlinear effects in the ELF waves propagating along the magnetic field in the magnetosphere. Space Sci. Rev. 16, 361388.CrossRefGoogle Scholar
Katoh, Y. 2014 A simulation study of the propagation of whistler-mode chorus in the Earth's inner magnetosphere. Earth Planet. Space 66, 6.CrossRefGoogle Scholar
Katoh, Y. & Omura, Y. 2011 Amplitude dependence of frequency sweep rates of whistler mode chorus emissions. J. Geophys. Res. 116, 7201.CrossRefGoogle Scholar
Katoh, Y. & Omura, Y. 2013 Effect of the background magnetic field inhomogeneity on generation processes of whistler-mode chorus and broadband hiss-like emissions. J. Geophys. Res. 118, 41894198.CrossRefGoogle Scholar
Katoh, Y. & Omura, Y. 2016 Electron hybrid code simulation of whistler-mode chorus generation with real parameters in the Earth's inner magnetosphere. Earth Planet. Space 68 (1), 192.CrossRefGoogle Scholar
Kennel, C. F. & Engelmann, F. 1966 Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids 9, 23772388.CrossRefGoogle Scholar
Kersten, T., Horne, R. B., Glauert, S. A., Meredith, N. P., Fraser, B. J. & Grew, R. S. 2014 Electron losses from the radiation belts caused by EMIC waves. J. Geophys. Res. 119, 88208837.CrossRefGoogle Scholar
Khazanov, G. V., Tel'nikhin, A. A. & Kronberg, T. K. 2013 Radiation belt electron dynamics driven by large-amplitude whistlers. J. Geophys. Res. (Space Phys.) 118 (10), 63976404.CrossRefGoogle Scholar
Khazanov, G. V., Tel'nikhin, A. A. & Kronberg, T. K. 2014 Stochastic electron motion driven by space plasma waves. Nonlinear Process. Geophys. 21 (1), 6185.CrossRefGoogle Scholar
Kitahara, M. & Katoh, Y. 2019 Anomalous trapping of low pitch angle electrons by coherent whistler mode waves. J. Geophys. Res. 124 (7), 55685583.CrossRefGoogle Scholar
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., Connerney, J., et al. 2013 The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev. 179, 127181.CrossRefGoogle Scholar
Krafft, C. & Volokitin, A. S. 2016 Electron acceleration by langmuir waves produced by a decay cascade. Astrophys. J. 821, 99.CrossRefGoogle Scholar
Krafft, C., Volokitin, A. S. & Krasnoselskikh, V. V. 2013 Interaction of energetic particles with waves in strongly inhomogeneous solar wind plasmas. Astrophys. J. 778, 111.CrossRefGoogle Scholar
Kubota, Y. & Omura, Y. 2017 Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause. J. Geophys. Res. (Space Phys.) 122 (1), 293309.CrossRefGoogle Scholar
Kubota, Y. & Omura, Y. 2018 Nonlinear dynamics of radiation belt electrons interacting with chorus emissions localized in longitude. J. Geophys. Res. (Space Phys.) 123, 48354857.CrossRefGoogle Scholar
Kubota, Y., Omura, Y. & Summers, D. 2015 Relativistic electron precipitation induced by EMIC-triggered emissions in a dipole magnetosphere. J. Geophys. Res. (Space Phys.) 120 (6), 43844399.CrossRefGoogle Scholar
Kuzichev, I. V., Vasko, I. Y., Rualdo Soto-Chavez, A., Tong, Y., Artemyev, A. V., Bale, S. D. & Spitkovsky, A. 2019 Nonlinear evolution of the whistler heat flux instability. Astrophys. J. 882 (2), 81. arXiv:1907.04878CrossRefGoogle Scholar
Le Queau, D. & Roux, A. 1987 Quasi-monochromatic wave-particle interactions in magnetospheric plasmas. Solar Phys. 111, 5980.CrossRefGoogle Scholar
Leoncini, X., Vasiliev, A. & Artemyev, A. 2018 Resonance controlled transport in phase space. Phys. D Nonlinear Phenom. 364, 2226.CrossRefGoogle Scholar
Lerche, I. 1968 Quasilinear theory of resonant diffusion in a magneto-active, relativistic plasma. Phys. Fluids 11.CrossRefGoogle Scholar
Li, W., Santolik, O., Bortnik, J., Thorne, R. M., Kletzing, C. A., Kurth, W. S. & Hospodarsky, G. B. 2016 New chorus wave properties near the equator from Van Allen Probes wave observations. Geophys. Res. Lett. 43, 47254735.CrossRefGoogle Scholar
Li, W., Thorne, R. M., Ma, Q., Ni, B., Bortnik, J., Baker, D. N., Spence, H. E., Reeves, G. D., Kanekal, S. G., Green, J. C., et al. 2014 Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm. J. Geophys. Res. 119, 46814693.CrossRefGoogle Scholar
Lichtenberg, A. J. & Lieberman, M. A. 1983 Regular and Stochastic Motion, Applied Mathematical Sciences. Springer.CrossRefGoogle Scholar
Lundin, B. V. & Shkliar, D. R. 1977 Interaction of electrons with low transverse velocities with VLF waves in an inhomogeneous plasma. Geomagn. Aeron. 17, 246251.Google Scholar
Lyons, L. R. & Williams, D. J. 1984 Quantitative Aspects of Magnetospheric Physics. Reidel Publishing Company.CrossRefGoogle Scholar
Ma, Q., Li, W., Bortnik, J., Thorne, R. M., Chu, X., Ozeke, L. G., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., et al. 2018 Quantitative evaluation of radial diffusion and local acceleration processes during GEM challenge events. J. Geophys. Res. (Space Phys.) 123 (3), 19381952.CrossRefGoogle Scholar
Ma, Q., Li, W., Thorne, R. M., Nishimura, Y., Zhang, X.-J., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Henderson, M. G., et al. 2016 Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt. J. Geophys. Res. 121, 42174231.CrossRefGoogle Scholar
Ma, Q., Mourenas, D., Li, W., Artemyev, A. & Thorne, R. M. 2017 VLF waves from ground-based transmitters observed by the Van Allen Probes: statistical model and effects on plasmaspheric electrons. Geophys. Res. Lett. 44, 64836491.CrossRefGoogle Scholar
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G. & Ukhorskiy, A. 2013 Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev. 179, 327.CrossRefGoogle Scholar
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., Bolton, S. J., Levin, S. M., Adriani, A., Allegrini, F., et al. 2017 Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature 549 (7670), 6669.CrossRefGoogle ScholarPubMed
Means, J. D. 1972 Use of the three-dimensional covariance matrix in analyzing the polarization properties of plane waves. J. Geophys. Res. 77, 5551.CrossRefGoogle Scholar
Menietti, J. D., Shprits, Y. Y., Horne, R. B., Woodfield, E. E., Hospodarsky, G. B. & Gurnett, D. A. 2012 Chorus, ECH, and Z mode emissions observed at Jupiter and Saturn and possible electron acceleration. J. Geophys. Res. 117, A12214.Google Scholar
Meredith, N. P., Horne, R. B., Glauert, S. A. & Anderson, R. R. 2007 Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers. J. Geophys. Res. 112, 8214.Google Scholar
Millan, R. M. & Thorne, R. M. 2007 Review of radiation belt relativistic electron losses. J. Atmos. Sol.-Terr. Phys. 69, 362377.CrossRefGoogle Scholar
Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Malka, V., Darrow, C. B., Danson, C., Neely, D., et al. 1995 Electron acceleration from the breaking of relativistic plasma waves. Nature 377 (6550), 606608.CrossRefGoogle Scholar
Mourenas, D., Artemyev, A., Agapitov, O. & Krasnoselskikh, V. 2012 Acceleration of radiation belts electrons by oblique chorus waves. J. Geophys. Res. 117, 10212.Google Scholar
Mourenas, D., Artemyev, A. V., Agapitov, O. V., Krasnoselskikh, V. & Mozer, F. S. 2015 Very oblique whistler generation by low-energy electron streams. J. Geophys. Res. 120, 36653683.CrossRefGoogle Scholar
Mourenas, D., Artemyev, A. V., Agapitov, O. V., Mozer, F. S. & Krasnoselskikh, V. V. 2016 a Equatorial electron loss by double resonance with oblique and parallel intense chorus waves. J. Geophys. Res. 121, 44984517.CrossRefGoogle Scholar
Mourenas, D., Artemyev, A. V., Ma, Q., Agapitov, O. V. & Li, W. 2016 b Fast dropouts of multi-MeV electrons due to combined effects of EMIC and whistler mode waves. Geophys. Res. Lett. 43 (9), 41554163.CrossRefGoogle Scholar
Mourenas, D., Zhang, X.-J., Artemyev, A. V., Angelopoulos, V., Thorne, R. M., Bortnik, J., Neishtadt, A. I. & Vasiliev, A. A. 2018 Electron nonlinear resonant interaction with short and intense parallel chorus wave packets. J. Geophys. Res. 123, 49794999.CrossRefGoogle Scholar
Neishtadt, A. I. 1999 On adiabatic invariance in two-frequency systems. In Hamiltonian Systems with Three or More Degrees of Freedom (ed. C. Simo), NATO ASI Series C, vol. 533, pp. 193–213. Kluwer Academic Publishers.CrossRefGoogle Scholar
Neishtadt, A. I. 2014 Averaging, passage through resonances, and capture into resonance in two-frequency systems. Russian Math. Surv. 69 (5), 771.CrossRefGoogle Scholar
Neishtadt, A. I. & Vasiliev, A. A. 2006 Destruction of adiabatic invariance at resonances in slow fast Hamiltonian systems. Nucl. Instrum. Meth. Phys. Res. A 561, 158165. arXiv:arXiv:nlin/0511050CrossRefGoogle Scholar
Ni, B., Thorne, R. M., Zhang, X., Bortnik, J., Pu, Z., Xie, L., Hu, Z.-J., Han, D., Shi, R., Zhou, C., et al. 2016 Origins of the Earth's diffuse auroral precipitation. Space Sci. Rev. 200, 205259.CrossRefGoogle Scholar
Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Lyons, L. R., Angelopoulos, V., Mende, S. B., Bonnell, J. W., Le Contel, O., Cully, C., et al. 2010 Identifying the driver of pulsating aurora. Science 330, 8184.CrossRefGoogle ScholarPubMed
Nunn, D. 1986 A nonlinear theory of sideband stability in ducted whistler mode waves. Planet. Space Sci. 34, 429451.CrossRefGoogle Scholar
Nunn, D. & Omura, Y. 2012 A computational and theoretical analysis of falling frequency VLF emissions. J. Geophys. Res. 117, 8228.Google Scholar
Nunn, D. & Omura, Y. 2015 A computational and theoretical investigation of nonlinear wave-particle interactions in oblique whistlers. J. Geophys. Res. 120, 28902911.CrossRefGoogle Scholar
Nunn, D., Santolik, O., Rycroft, M. & Trakhtengerts, V. 2009 On the numerical modelling of VLF chorus dynamical spectra. Ann. Geophys. 27, 23412359.CrossRefGoogle Scholar
Omura, Y., Furuya, N. & Summers, D. 2007 Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field. J. Geophys. Res. 112, 6236.Google Scholar
Omura, Y., Katoh, Y. & Summers, D. 2008 Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res. 113, 4223.CrossRefGoogle Scholar
Omura, Y., Matsumoto, H., Nunn, D. & Rycroft, M. J. 1991 A review of observational, theoretical and numerical studies of VLF triggered emissions. J. Atmos. Terr. Phys. 53, 351368.CrossRefGoogle Scholar
Omura, Y., Miyashita, Y., Yoshikawa, M., Summers, D., Hikishima, M., Ebihara, Y. & Kubota, Y. 2015 Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere. J. Geophys. Res. 120, 95459562.CrossRefGoogle Scholar
Omura, Y., Nunn, D. & Summers, D. 2013 Generation processes of whistler mode chorus emissions: current status of nonlinear wave growth theory. In Dynamics of the Earth's Radiation Belts and Inner Magnetosphere (ed. D. Summers, I. U. Mann, D. N. Baker & M. Schulz), pp. 243–254. American Geophysical Union.CrossRefGoogle Scholar
Palmadesso, P. J. 1972 Resonance, particle trapping, and Landau damping in finite amplitude obliquely propagating waves. Phys. Fluids 15, 20062013.CrossRefGoogle Scholar
Roberg-Clark, G. T., Agapitov, O., Drake, J. F. & Swisdak, M. 2019 Scattering of energetic electrons by heat-flux-driven whistlers in flares. Astrophys. J. 887 (2), 190. arXiv:1908.06481CrossRefGoogle Scholar
Ryutov, D. D. 1969 Quasilinear relaxation of an electron beam in an inhomogeneous plasma. Sov. J. Expl Theor. Phys. 30, 131.Google Scholar
Sagdeev, R. Z., Usikov, D. A. & Zaslavsky, G. M. 1988 Nonlinear Physics. From the Pendulum to Turbulence and Chaos, Contemporary Concepts in Physics. Harwood Academic Publishers.Google Scholar
Santolık, O., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B. & Bounds, S. R. 2014 Fine structure of large-amplitude chorus wave packets. Geophys. Res. Lett. 41, 293299.CrossRefGoogle Scholar
Shapiro, V. D. & Sagdeev, R. Z. 1997 Nonlinear wave-particle interaction and conditions for the applicability of quasilinear theory. Phys. Rep. 283, 4971.CrossRefGoogle Scholar
Sheeley, B. W., Moldwin, M. B., Rassoul, H. K. & Anderson, R. R. 2001 An empirical plasmasphere and trough density model: CRRES observations. J. Geophys. Res. 106, 2563125642.CrossRefGoogle Scholar
Shklyar, D. R. 1981 Stochastic motion of relativistic particles in the field of a monochromatic wave. Sov. Phys. JETP 53, 1197–1192.Google Scholar
Shklyar, D. R. 2011 On the nature of particle energization via resonant wave-particle interaction in the inhomogeneous magnetospheric plasma. Ann. Geophys. 29, 11791188.CrossRefGoogle Scholar
Shklyar, D. R. & Matsumoto, H. 2009 Oblique whistler-mode waves in the inhomogeneous magnetospheric plasma: resonant interactions with energetic charged particles. Surv. Geophys. 30, 55104.CrossRefGoogle Scholar
Shklyar, D. R. & Zimbardo, G. 2014 Particle dynamics in the field of two waves in a magnetoplasma. Plasma Phys. Control. Fusion 56 (9), 095002.CrossRefGoogle Scholar
Shprits, Y. Y., Drozdov, A. Y., Spasojevic, M., Kellerman, A. C., Usanova, M. E., Engebretson, M. J., Agapitov, O. V., Zhelavskaya, I. S., Raita, T. J., Spence, H. E., et al. 2016 Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts. Nat. Commun. 7, 12883.CrossRefGoogle ScholarPubMed
Shprits, Y. Y., Subbotin, D. A., Meredith, N. P. & Elkington, S. R. 2008 Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: local acceleration and loss. J. Atmos. Sol.-Terr. Phys. 70, 16941713.CrossRefGoogle Scholar
Silin, I., Mann, I. R., Sydora, R. D., Summers, D. & Mace, R. L. 2011 Warm plasma effects on electromagnetic ion cyclotron wave MeV electron interactions in the magnetosphere. J. Geophys. Res. (Space Phys.) 116 (A5), A05215.CrossRefGoogle Scholar
Solovev, V. V. & Shkliar, D. R. 1986 Particle heating by a low-amplitude wave in an inhomogeneous magnetoplasma. Sov. Phys. JETP 63, 272277.Google Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Summers, D., Omura, Y., Nakamura, S. & Kletzing, C. A. 2014 Fine structure of plasmaspheric hiss. J. Geophys. Res. 119, 91349149.CrossRefGoogle Scholar
Summers, D. & Thorne, R. M. 2003 Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. 108, 1143.CrossRefGoogle Scholar
Summers, D., Thorne, R. M. & Xiao, F. 1998 Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J. Geophys. Res. 103, 2048720500.CrossRefGoogle Scholar
Tao, X. 2014 A numerical study of chorus generation and the related variation of wave intensity using the DAWN code. J. Geophys. Res. (Space Phys.) 119 (5), 33623372.CrossRefGoogle Scholar
Tao, X. & Bortnik, J. 2010 Nonlinear interactions between relativistic radiation belt electrons and oblique whistler mode waves. Nonlinear Process. Geophys. 17, 599604.CrossRefGoogle Scholar
Tao, X., Bortnik, J., Albert, J. M. & Thorne, R. M. 2012 a Comparison of bounce-averaged quasi-linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations. J. Geophys. Res. 117, 10205.Google Scholar
Tao, X., Bortnik, J., Albert, J. M., Thorne, R. M. & Li, W. 2013 The importance of amplitude modulation in nonlinear interactions between electrons and large amplitude whistler waves. J. Atmos. Sol.-Terr. Phys. 99, 6772.CrossRefGoogle Scholar
Tao, X., Li, W., Bortnik, J., Thorne, R. M. & Angelopoulos, V. 2012 b Comparison between theory and observation of the frequency sweep rates of equatorial rising tone chorus. Geophys. Res. Lett. 39 (8), L08106.CrossRefGoogle Scholar
Tao, X., Zonca, F. & Chen, L. 2017 Identify the nonlinear wave-particle interaction regime in rising tone chorus generation. Geophys. Res. Lett. 44 (8), 34413446.CrossRefGoogle Scholar
Tao, X., Zonca, F., Chen, L. & Wu, Y. 2020 Theoretical and numerical studies of chorus waves: a review. Sci. China Earth Sci. 63 (1), 7892.CrossRefGoogle Scholar
Thorne, R. M. 2010 Radiation belt dynamics: the importance of wave-particle interactions. Geophys. Res. Lett. 372, 22107.Google Scholar
Thorne, R. M. & Kennel, C. F. 1971 Relativistic electron precipitation during magnetic storm main phase. J. Geophys. Res. 76, 4446.CrossRefGoogle Scholar
Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., Baker, D. N., Spence, H. E., Reeves, G. D., Henderson, M. G., et al. 2013 Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature 504, 411414.CrossRefGoogle ScholarPubMed
Thorne, R. M., Ni, B., Tao, X., Horne, R. B. & Meredith, N. P. 2010 Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467, 943946.CrossRefGoogle ScholarPubMed
Tikhonchuk, V. T. 2019 Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion. Nucl. Fusion 59 (3), 032001.CrossRefGoogle Scholar
Titova, E. E., Kozelov, B. V., Jiricek, F., Smilauer, J., Demekhov, A. G. & Trakhtengerts, V. Y. 2003 Verification of the backward wave oscillator model of VLF chorus generation using data from MAGION 5 satellite. Ann. Geophys. 21, 10731081.CrossRefGoogle Scholar
Tong, Y., Vasko, I. Y., Artemyev, A. V., Bale, S. D. & Mozer, F. S. 2019 Statistical study of whistler waves in the solar wind at 1 AU. Astrophys. J. 878 (1), 41. arXiv:1905.08958CrossRefGoogle Scholar
Tyler, E., Breneman, A., Cattell, C., Wygant, J., Thaller, S. & Malaspina, D. 2019 Statistical occurrence and distribution of high-amplitude whistler mode waves in the outer radiation belt. Geophys. Res. Lett. 46 (5), 23282336.CrossRefGoogle Scholar
Vainchtein, D., Zhang, X.-J., Artemyev, A., Mourenas, D., Angelopoulos, V. & Thorne, R. M. 2018 Evolution of electron distribution driven by nonlinear resonances with intense field-aligned chorus waves. J. Geophys. Res. 123, 81498169. doi:10.1029/2018JA025654.CrossRefGoogle Scholar
Van Kampen, N. G. 2003 Stochastic Processes in Physics and Chemistry, 3rd edn. North Holland.Google Scholar
Vasilev, A. A., Zaslavskii, G. M., Natenzon, M. I., Neishtadt, A. I. & Petrovichev, B. A. 1988 Attractors and stochastic attractors of motion in a magnetic field. Zh. Eksp. Teor. Fiz. 94, 170187.Google Scholar
Vedenov, A. A., Velikhov, E. & Sagdeev, R. 1962 Quasilinear theory of plasma oscillations. Nuclear Fusion Suppl. 2, 465475.Google Scholar
Wang, R., Vasko, I. Y., Mozer, F. S., Bale, S. D., Artemyev, A. V., Bonnell, J. W., Ergun, R., Giles, B., Lindqvist, P. A., Russell, C. T., et al. 2020 Electrostatic turbulence and Debye-scale structures in collisionless shocks. Astrophys. J. Lett. 889 (1), L9. arXiv:1912.01770CrossRefGoogle Scholar
Watt, C. E. J. & Rankin, R. 2009 Electron trapping in shear Alfvén waves that power the aurora. Phys. Rev. Lett. 102 (4), 045002.CrossRefGoogle ScholarPubMed
Wilson, L. B. III, Cattell, C., Kellogg, P. J., Goetz, K., Kersten, K., Hanson, L., MacGregor, R. & Kasper, J. C. 2007 Waves in interplanetary shocks: a wind/WAVES study. Phys. Rev. Lett. 99 (4), 041101.CrossRefGoogle ScholarPubMed
Wilson, L. B. III, Cattell, C., Kellogg, P. J., Wygant, J. R., Goetz, K., Breneman, A. & Kersten, K. 2011 The properties of large amplitude whistler mode waves in the magnetosphere: propagation and relationship with geomagnetic activity. Geophys. Res. Lett. 38, 17107.CrossRefGoogle Scholar
Wilson, L. B. III, Koval, A., Szabo, A., Breneman, A., Cattell, C. A., Goetz, K., Kellogg, P. J., Kersten, K., Kasper, J. C., Maruca, B. A., et al. 2012 Observations of electromagnetic whistler precursors at supercritical interplanetary shocks. Geophys. Res. Lett. 39, 8109.CrossRefGoogle Scholar
Wilson, L. B., Koval, A., Szabo, A., Breneman, A., Cattell, C. A., Goetz, K., Kellogg, P. J., Kersten, K., Kasper, J. C., Maruca, B. A., et al. 2013 Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks. J. Geophys. Res. 118, 516. arXiv:1207.6429CrossRefGoogle Scholar
Yoon, P. H., Seough, J., Salem, C. S. & Klein, K. G. 2019 Solar wind temperature isotropy. Phys. Rev. Lett. 123 (14), 145101.CrossRefGoogle ScholarPubMed
Yu, J., Wang, J., Li, L. Y., Cui, J., Cao, J. B. & He, Z. G. 2020 Electron diffusion by coexisting plasmaspheric hiss and chorus waves: multisatellite observations and simulations. Geophys. Res. Lett. 47 (15).CrossRefGoogle Scholar
Zaslavskii, G. M., Zakharov, M. I., Neishtadt, A. I., Sagdeev, R. Z. & Usikov, D. A. 1989 Multidimensional Hamiltonian chaos. Zh. Eksp. Teor. Fiz. 96, 15631586.Google Scholar
Zaslavsky, G. M. 2005 Hamiltonian Chaos and Fractional Dynamics. Oxford University Press.Google Scholar
Zaslavsky, A., Krafft, C., Gorbunov, L. & Volokitin, A. 2008 Wave-particle interaction at double resonance. Phys. Rev. E 77 (5), 056407.CrossRefGoogle ScholarPubMed
Zelenyi, L. M. & Milovanov, A. V. 2004 Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics. Phys. Uspekhi 47, 749788.CrossRefGoogle Scholar
Zhang, X. J., Agapitov, O., Artemyev, A. V., Mourenas, D., Angelopoulos, V., Kurth, W. S., Bonnell, J. W. & Hospodarsky, G. B. 2020 a Phase decoherence within intense chorus wave packets constrains the efficiency of nonlinear resonant electron acceleration. Geophys. Res. Lett. 47 (20), e89807.CrossRefGoogle Scholar
Zhang, X.-J., Li, W., Thorne, R. M., Angelopoulos, V., Bortnik, J., Kletzing, C. A., Kurth, W. S. & Hospodarsky, G. B. 2016 Statistical distribution of EMIC wave spectra: observations from Van Allen Probes. Geophys. Res. Lett. 43, 12.CrossRefGoogle Scholar
Zhang, X. J., Mourenas, D., Artemyev, A. V., Angelopoulos, V., Bortnik, J., Thorne, R. M., Kurth, W. S., Kletzing, C. A. & Hospodarsky, G. B. 2019 Nonlinear electron interaction with intense chorus waves: statistics of occurrence rates. Geophys. Res. Lett. 46 (13), 71827190.CrossRefGoogle Scholar
Zhang, X. J., Mourenas, D., Artemyev, A. V., Angelopoulos, V., Kurth, W. S., Kletzing, C. A. & Hospodarsky, G. B. 2020 b Rapid frequency variations within intense chorus wave packets. Geophys. Res. Lett. 47 (15), e88853.Google Scholar
Zhang, X.-J., Mourenas, D., Artemyev, A. V., Angelopoulos, V. & Thorne, R. M. 2017 Contemporaneous EMIC and whistler mode waves: observations and consequences for MeV electron loss. Geophys. Res. Lett. 44, 81138121.CrossRefGoogle Scholar
Zhang, X. J., Thorne, R., Artemyev, A., Mourenas, D., Angelopoulos, V., Bortnik, J., Kletzing, C. A., Kurth, W. S. & Hospodarsky, G. B. 2018 Properties of intense field-aligned lower-band chorus waves: implications for nonlinear wave-particle interactions. J. Geophys. Res. (Space Phys.) 123 (7), 53795393.CrossRefGoogle Scholar
Zheng, L., Chen, L. & Zhu, H. 2019 Modeling energetic electron nonlinear wave-particle interactions with electromagnetic ion cyclotron waves. J. Geophys. Res. (Space Phys.) 124 (5), 34363453.CrossRefGoogle Scholar