Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T05:00:14.621Z Has data issue: false hasContentIssue false

Longitudinal waves in a perpendicular collisionless plasma shock: I. Cold ions

Published online by Cambridge University Press:  13 March 2009

S. Peter Gary
Affiliation:
Department of Applied Mathematics, University College of North Wales, Bangor, Caornarvonshire, Wales
J. J. Sanderson
Affiliation:
Department of Applied Mathematics, University of St Andrews, St Andrews, Fife, Scotland

Abstract

This paper considers electrostatic waves in a Vlasov plasma of unmagnetized ions and magnetized, Maxwellian electrons. The linear dispersion relation is derived for waves in a perpendicular shock such that the most important sources of instability are the E × B and ∇B electron drifts. For the case of cold ions, propagation perpendicular to the applied magnetic field, and the E × B drift alone, a numerical analysis of frequency vs. wave-number is presented. The effects of the ∇B drift are also considered, and it is shown that the maximum growth rate can be larger than the maximum growth rate for the zero magnetic field ion acoustic instabifity under comparable conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bekefi, G. 1966 Radiation Processes in Plasmas. New York: John Wiley and Sons, Inc.Google Scholar
Bernstein, I. B. 1958 Phys. Rev. 109, 10.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. New York: Academic Press.Google Scholar
Fried, B. D. & Gould, R. W. 1961 Phys. Fluids, 4, 139.CrossRefGoogle Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. New York: Academic Press.Google Scholar
Keilhacker, M., Kornherr, M. & Steuer, K.-H. 1969 Z. Physik, 223, 385.CrossRefGoogle Scholar
Krall, N. A. 1968 In Advances in Plasma Physics, vol. 1, Simon, A. and Thompson, W. B., Eds. New York: Intorscience Publishers.Google Scholar
Krall, N. A. & Book, D. L. 1969a Phys. Fluids, 12, 347.CrossRefGoogle Scholar
Krall, N. A. & Book, D. L. 1969b Phys. Rev. Lett. 23, 574.CrossRefGoogle Scholar
Kunze, H.-J., Griem, H. R., Desilva, A. W., Goldenbaum, G. C. & Spalding, I. J. 1969 Phys. Fluids, 12, 2669.CrossRefGoogle Scholar
Kurtmullaev, R. KH., Masalov, V. L., Mekler, K. I. & Pil'skii, V. I. 1968 ZhETF Pis'ma, 7, 65 (JETP Lett. 7, 49).Google Scholar
Landau, R. W. & Cuperman, S. 1970 J. Plasma Phys. 4, 13.CrossRefGoogle Scholar
Montgomery, D. & Tidman, D. A. 1964 Plasma Kinetic Theory. New York: McGraw-Hill Book Co., Inc.Google Scholar
Paul, J. W. M., Daughney, C. C. & Holmes, L. S. 1969 Nature, Lond. 223, 822.CrossRefGoogle Scholar
Paul, J. W. M., Goldenbaum, G. C., Iiyoshi, A., Holmes, L. S. & Hardcastle, R. A. 1967 Nature, Lond. 216, 363.CrossRefGoogle Scholar
Paul, J. W. M., Holmes, L. S., Paekinson, M. J. & Sheffield, J. 1965 Nature, Lond. 208, 133.CrossRefGoogle Scholar
Sagdeev, R. Z. 1967 Proc. Symp. in Appl. Maths. 18, 281.CrossRefGoogle Scholar
Tataronis, J. A. & Crawford, F. W. 1965 Proc. Seventh mt. Conf. on Phenomena in loniced Gases, Belgrade, Yugoslavia, vol. 2.Google Scholar