Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T06:24:53.598Z Has data issue: false hasContentIssue false

Longitudinal dust acoustic solitary waves in a strongly coupled complex (dusty) plasma

Published online by Cambridge University Press:  02 February 2015

Nikhil Chakrabarti*
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar Calcutta - 700 064, India
Samiran Ghosh
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar Calcutta - 700 064, India
*
Email address for correspondence: [email protected]

Abstract

The dynamics of the weakly nonlinear and weakly dispersive low frequency longitudinal dust acoustic waves (LDAWs) in a strongly coupled complex (dusty) plasma are investigated using generalized hydrodynamic (GH) model. In presence of strong correlation, the nonlinear wave is shown to be governed by a Korteweg–de Vries (KdV) equation with a nonlocal nonlinear forcing and a linear damping terms. This novel equation is solved numerically to show the competition between nonlinear forcing and dissipative damping in the formation of the localized structures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandyopadhyay, P., Prasad, G., Sen, A. and Kaw, P. K. 2008 Phys. Rev. Lett. 101, 065 006.CrossRefGoogle Scholar
Frenkel, Y. I. 1948 Kinetic Theory of Liquids. Oxford: Clarendon.Google Scholar
Ghosh, S., Gupta, M. R., Chakrabarti, N. and Chaudhuri, M. 2011 Phys. Rev. E 83, 066 406.CrossRefGoogle Scholar
Hunter, J. R. and Saxton, R. 1991 SIAM J. Appl. Math. 51, 1498.CrossRefGoogle Scholar
Ichimaru, S., Iyetomi, H. and Tanaka, S. 1987 Phys. Rep. 149, 91.CrossRefGoogle Scholar
Kaw, P. K. and Sen, A. 1998 Phys. Plasmas 5, 3552.CrossRefGoogle Scholar
Ohta, H. and Hamaguchi, S. 2000 Phys. Rev. Lett. 84, 6026.CrossRefGoogle Scholar
Pieper, J. and Goree, J. 1996 Phys. Rev. Lett. 77, 3137.CrossRefGoogle Scholar
Pramanik, J., Prasad, G., Sen, A. and Kaw, P. K. 2002 Phys. Rev. Lett. 88, 175.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space. Sci. 38, 543.CrossRefGoogle Scholar
Rosenberg, M. and Kalman, G. 1997 Phys. Rev. E 56, 7166.CrossRefGoogle Scholar
Rubin-Zuzic, M.et al. 2006 Nature Phys. 2, 181.CrossRefGoogle Scholar
Sharma, S. K., Boruah, A. and Bailung, H. 2014 Phys. Rev. E 89, 013 110.CrossRefGoogle Scholar
Thomas, H. and Morfil, G. 1996 Nature (London) 379, 806.CrossRefGoogle Scholar