Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T12:37:53.303Z Has data issue: false hasContentIssue false

Longitudinal characterization of the wake and electron bunch in a laser wakefield accelerator

Published online by Cambridge University Press:  07 January 2019

Zhijun Zhang
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Wentao Wang
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Jiansheng Liu*
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China Department of Physics, Shanghai Normal University, Shanghai 200234, China Institute of Modern Optics, Nankai University, Tianjing 300000, PR China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
Ming Fang
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Wentao Li
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Ye Tian
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Rong Qi
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Cheng Wang
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Changhai Yu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Zhiyong Qin
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Jiaqi Liu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Ruxin Li
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Zhizhan Xu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
*
Email address for correspondence: [email protected]

Abstract

Energy chirp compensation of the electron bunch (e-bunch) in a laser wakefield accelerator, which is caused by the phase space rotation in the gradient wakefield, has been applied in many schemes for low energy spread e-bunch generation. We report the experimental observation of energy chirp compensation of the e-bunch in a nonlinear laser wakefield accelerator with a negligible beam loading effect. By adjusting the acceleration length using a wedge-roof block, the chirp compensation of the accelerated e-bunch was observed via an electron spectrometer. Apart from this, some significant parameters for the compensation process, such as the longitudinal dispersion and wakefield slope at the bunch position, were also estimated. A detailed comparison between experiment and simulation shows good agreement of the wakefield and bunch parameters. These results give a clear demonstration of the longitudinal characteristics of the wakefield in a plasma and the bunch dynamics, which are important for better control of a compact laser wakefield accelerator.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonnet, T., Comet, M., Denis-petit, D., Gobet, F., Hannachi, F., Tarisien, M., Versteegen, M. & Aleonard, M. M. 2013 Response functions of imaging plates to photons, electrons and 4He particles. Rev. Sci. Instrum. 84, 103510.Google Scholar
Bourgeois, N., Cowley, J. & Hooker, S. M. 2013 Two-pulse ionization injection into quasilinear laser wakefields. Phys. Rev. Lett. 111, 155004.Google Scholar
Brinkmann, R., Delbos, N., Dornmair, I., Kirchen, M., Assmann, R., Behrens, C., Floettmann, K., Grebenyuk, J., Gross, M., Jalas, S. et al. 2017 Chirp mitigation of plasma-accelerated beams by a modulated plasma density. Phys. Rev. Lett. 118, 214801.Google Scholar
Buck, A., Wenz, J., Xu, J., Khrennikov, K., Schmid, K., Heigoldt, M., Mikhailova, J. M., Geissler, M., Shen, B., Krausz, F. et al. 2013 Shock-front injector for high-quality laser-plasma acceleration. Phys. Rev. Lett. 110, 185006.Google Scholar
Chen, S., Powers, N. D., Ghebregziabher, I., Maharjan, C. M., Liu, C., Golovin, G., Banerjee, S., Zhang, J., Cunningham, N., Moorti, A. et al. 2013 MeV-energy X rays from inverse compton scattering with laser-wakefield accelerated electrons. Phys. Rev. Lett. 110, 155003.Google Scholar
Corde, S., Thaury, C., Lifschitz, A., Lambert, G., TA PHUOC, K., Davoine, X., Lehe, R., Douillet, D., Rousse, A. & Malka, V. 2013 Observation of longitudinal and transverse self-injections in laser-plasma accelerators. Nat. Commun. 4, 1501.Google Scholar
Faure, J., Rechatin, C., Lundh, O., Ammoura, L. & Malka, V. 2010 Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel. Phys. Plasmas 17, 083107.Google Scholar
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. & Malka, V. 2006 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737.Google Scholar
Fuchs, M., Weingartner, R., Popp, A., Major, Z., Becker, S., Osterhoff, J., Cortrie, I., Zeitler, B., Horlein, R., Tsakiris, G. D. et al. 2009 Laser-driven soft-X-ray undulator source. Nat. Phys. 5, 826.Google Scholar
Geddes, C. G. R., Nakamura, K., Plateau, G. R., Toth, C., Cormier-Michel, E., Esarey, E., Schroeder, C. B., Cary, J. R. & Leemans, W. P. 2008 Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100, 215004.Google Scholar
Gonsalves, A. J., Nakamura, K., Lin, C., Panasenko, D., Shiraishi, S., Sokollik, T., Benedetti, C., Schroeder, C. B., Geddes, C. G. R., Van Tilborg, J. et al. 2011 Tunable laser plasma accelerator based on longitudinal density tailoring. Nat. Phys. 7, 862.Google Scholar
Heigoldt, M., Popp, A., Khrennikov, K., Wenz, J., Chou, S. W., Karsch, S., Bajlekov, S. I., Hooker, S. M. & Schmidt, B. 2015 Temporal evolution of longitudinal bunch profile in a laser wakefield accelerator. Phys. Rev. Spec. Top. 18, 121302.Google Scholar
Hsieh, C. T., Huang, C. M., Chang, C. L., Ho, Y. C., Chen, Y. S., Lin, J. Y., Wang, J. & Chen, S. Y. 2006 Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator. Phys. Rev. Lett. 96, 095001.Google Scholar
Huang, Z., Ding, Y. & Schroeder, C. B. 2012 Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett. 109, 204801.Google Scholar
Jaroszynski, D. A., Bingham, R., Brunetti, E., Ersfeld, B., Gallacher, J., Van Der Geer, B., Issac, R., Jamison, S. P., Jones, D., De Loos, M. et al. 2006 Radiation sources based on laser-plasma interactions. Phil. Trans. R. Soc. Lond. A 364, 689.Google Scholar
Kalmykov, S. Y., Beck, A., Yi, S. A., Khudik, V. N., Downer, M. C., Lefebvre, E., Shadwick, B. A. & Umstadter, D. P. 2011 Electron self-injection into an evolving plasma bubble: quasi-monoenergetic laser-plasma acceleration in the blowout regime. Phys. Plasmas 18, 056704.Google Scholar
Kalmykov, S. Y., Davoine, X., Lehe, R., Lifschitz, A. F. & Shadwick, B. A. 2015 Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses. Phys. Plasmas 22, 056701.Google Scholar
Kim, H. T., Pae, K. H., Cha, H. J., Kim, I. J., Yu, T. J., Sung, J. H., Lee, S. K., Jeong, T. M. & Lee, J. 2013 Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. Phys. Rev. Lett. 111, 165002.Google Scholar
Kim, H. T., Pathak, V. B., Hong Pae, K., Lifschitz, A., Sylla, F., Shin, J. H., Hojbota, C., Lee, S. K., Sung, J. H., Lee, H. W. et al. 2017 Stable multi-GeV electron accelerator driven by waveform-controlled PW laser pulses. Sci. Rep. 7, 10203.Google Scholar
Kostyukov, I., Pukhov, A. & Kiselev, S. 2004 Phenomenological theory of laser-plasma interaction in ‘bubble’ regime. Phys. Plasmas 11, 5256.Google Scholar
Leemans, W. P., Gonsalves, A. J., Mao, H. S., Nakamura, K., Benedetti, C., Schroeder, C. B., Th, T., Daniels, C., Mittelberger, J., Bulanov, D. E. et al. 2014 Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002.Google Scholar
Litos, M., Adli, E., An, W., Clarke, C. I., Clayton, C. E., Corde, S., Delahaye, J. P., England, R. J., Fisher, A. S., Frederico, J. et al. 2014 High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515, 92.Google Scholar
Liu, J. S., Xia, C. Q., Wang, W. T., Lu, H. Y., Wang, C., Deng, A. H., Li, W. T., Zhang, H., Liang, X. Y., Leng, Y. X. et al. 2011 All-optical cascaded laser wakefield accelerator using ionization-induced injection. Phys. Rev. Lett. 107, 035001.Google Scholar
Lu, H., Liu, M., Wang, W., Wang, C., Liu, J., Deng, A., Xu, J., Xia, C., Li, W., Zhang, H. et al. 2011 Laser wakefield acceleration of electron beams beyond 1 GeV from an ablative capillary discharge waveguide. Appl. Phys. Lett. 99, 091502.Google Scholar
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. & Silva, L. O. 2007 Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top. 10, 061301.Google Scholar
Manahan, G. G., Habib, A. F., Scherkl, P., Delinikolas, P., Beaton, A., Knetsch, A., Karger, O., Wittig, G., Heinemann, T., Sheng, Z. M. et al. 2017 Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams. Nat. Commun. 8, 15705.Google Scholar
Nieter, C. & Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 448.Google Scholar
Oz, E., Deng, S., Katsouleas, T., Muggli, P., Barnes, C., Blumenfeld, I., Decker, F., Emma, P., Hogan, M., Ischebeck, R. et al. 2007 Ionization-induced electron trapping in ultrarelativistic plasma wakes. Phys. Rev. Lett. 98, 084801.Google Scholar
Pak, A., Marsh, K. A., Martins, S. F., Lu, W., Mori, W. B. & Joshi, C. 2010 Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003.Google Scholar
Phuoc, K. T., Corde, S., Thaury, C., Malka, V., Tafzi, A., Goddet, J. P., Shah, R. C., Sebban, S. & Rousse, A. 2012 All-optical compton gamma-ray source. Nat. Photon. 6, 308.Google Scholar
Pollock, B. B., Clayton, C. E., Ralph, J. E., Albert, F., Davidson, A., Divol, L., Filip, C., Glenzer, S. H., Herpoldt, K., Lu, W. et al. 2011 Demonstration of a narrow energy spread, approximately 0.5 GeV electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 107, 045001.Google Scholar
Powers, N. D., Ghebregziabher, I., Golovin, G., Liu, C., Chen, S., Banerjee, S., Zhang, J. & Umstadter, D. P. 2014 Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source. Nat. Photon. 8, 29.Google Scholar
Rechatin, C., Davoine, X., Lifschitz, A., Ismail, A. B., Lim, J., Lefebvre, E., Faure, J. & Malka, V. 2009a Observation of beam loading in a laser-plasma accelerator. Phys. Rev. Lett. 103, 194804.Google Scholar
Rechatin, C., Faure, J., Ben-Ismail, A., Lim, J., Fitour, R., Specka, A., Videau, H., Tafzi, A., Burgy, F. & Malka, V. 2009b Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. Phys. Rev. Lett. 102, 164801.Google Scholar
Rechatin, C., Faure, J., Davoine, X., Lundh, O., Lim, J., Ben-Ismaïl, A., Burgy, F., Tafzi, A., Lifschitz, A., Lefebvre, E. et al. 2010 Characterization of the beam loading effects in a laser plasma accelerator. New J. Phys. 12, 045023.Google Scholar
Schlenvoigt, H. P., Haupt, K., Debus, A., Budde, F., Ckel, J., Pfotenhauer, O., Schwoerer, S., Rohwer, H., Gallacher, E., Brunetti, J. G. et al. 2007 A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130.Google Scholar
Schwoerer, H., Liesfeld, B., Schlenvoigt, H. P., Amthor, K. U. & Sauerbrey, R. 2006 Thomson-backscattered X rays from laser-accelerated electrons. Phys. Rev. Lett. 96, 014802.Google Scholar
Steinke, S., Van Tilborg, J., Benedetti, C., Geddes, C. G., Schroeder, C. B., Daniels, J., Swanson, K. K., Gonsalves, A. J., Nakamura, K., Matlis, N. H. et al. 2016 Multistage coupling of independent laser-plasma accelerators. Nature 530, 190.Google Scholar
Tajima, T. & Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43, 267.Google Scholar
Tsung, F. S., Narang, R., Mori, W. B., Joshi, C., Fonseca, R. A. & Silva, L. O. 2004 Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel. Phys. Rev. Lett. 93, 185002.Google Scholar
Tzoufras, M., Lu, W., Tsung, F. S., Huang, C., Mori, W. B., Katsouleas, T., Vieira, J., Fonseca, R. A. & Silva, L. O. 2008 Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 101, 145002.Google Scholar
Wang, W., Li, W., Liu, J., Wang, C., Chen, Q., Zhang, Z., Qi, R., Leng, Y., Liang, X., Liu, Y. et al. 2013a Control of seeding phase for a cascaded laser wakefield accelerator with gradient injection. Appl. Phys. Lett. 103, 243501.Google Scholar
Wang, X., Zgadzaj, R., Fazel, N., Li, Z., Yi, S. A., Zhang, X., Henderson, W., Chang, Y. Y., Korzekwa, R., Tsai, H. E. et al. 2013b Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. 4, 1988.Google Scholar
Xi, Y., Hidding, B., Bruhwiler, D., Pretzler, G. & Rosenzweig, J. B. 2013 Hybrid modeling of relativistic underdense plasma photocathode injectors. Phys. Rev. Spec. Top. 16, 031303.Google Scholar
Xu, Y., Lu, J., Li, W., Wu, F., Li, Y., Wang, C., Li, Z., Lu, X., Liu, Y., Leng, Y. et al. 2016 A Stable 200 TW/1 Hz Ti:sapphire laser for driving full coherent XFEL. Opt. Laser Technol. 79, 141.Google Scholar
Zeng, M., Chen, M., Yu, L. L., Mori, W. B., Sheng, Z. M., Hidding, B., Jaroszynski, D. A. & Zhang, J. 2015 Multichromatic Narrow-Energy-Spread Electron Bunches from Laser-Wakefield Acceleration with Dual-Color Lasers. Phys. Rev. Lett. 114, 084801.Google Scholar
Zhang, Z., Liu, J., Wang, W., Li, W., Yu, C., Tian, Y., Qi, R., Wang, C., Qin, Z., Fang, M. et al. 2015 Generation of high quality electron beams from a quasi-phase-stable cascaded laser wakefield accelerator with density-tailored plasma segments. New J. Phys. 17, 103011.Google Scholar
Zhang, Z. J., Li, W. T., Liu, J. S., Wang, W. T., Yu, C. H., Tian, Y., Nakajima, K., Deng, A. H., Qi, R., Wang, C. et al. 2016 Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching. Phys. Plasmas 23, 053106.Google Scholar
Zhou, Z., Liu, J., Lu, H., Wang, Z., Ju, J., Wang, C., Xia, C., Wang, W., Deng, A., Xu, Y. et al. 2010 Propagation effects on fusion neutron generation in the Coulomb explosion of deuterated methane clusters. J. Phys. B 43, 135603.Google Scholar