Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T14:27:20.007Z Has data issue: false hasContentIssue false

Localized coherent nonlinear wave structures in dusty plasma with non-thermal ions

Published online by Cambridge University Press:  01 December 2007

TARSEM SINGH GILL
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar–143005, India ([email protected])
CHANCHAL BEDI
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar–143005, India ([email protected])
NARESHPAL SINGH SAINI
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar–143005, India ([email protected])
HARVINDER KAUR
Affiliation:
Department of Physics, Khalsa College, Amritsar–143002, India

Abstract

In the present research paper, the characteristics of dust-acoustic solitary waves (DASWs) and double layers (DLs) are studied. Ions are treated as non-thermal and variable dust charge is considered. The Korteweg–de Vries equation is derived using a reductive perturbation method. It is noticed that compressive solitons are obtained up to a certain range of relative density δ (=ni0/ne0) beyond which rarefactive solitons are observed. The study is further extended to investigate the possibility of DLs. Only compressive DLs are permissible. Both DASWs and DLs are sensitive to variation of the non-thermal parameter.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.Google Scholar
[2]Verheest, F. 2000 Waves in Dusty Space Plasma. Dordrecht: Kluwer Academic.Google Scholar
[3]Shukla, P. K. and Silin, V. P. 1992 Phys. Scripta 45, 508.CrossRefGoogle Scholar
[4]Shukla, P. K. 1992 Phys. Scripta 45, 504.Google Scholar
[5]Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.Google Scholar
[6]Rao, N. N. 1999 Phys. Plasmas 6, 4414.Google Scholar
[7]Melandso, F., Askalsen, F. T. and Havnes, O. 1993 Planet. Space Sci. 41, 312.CrossRefGoogle Scholar
[8]Varma, R. K., Shukla, P. K. and Krishan, V. 1993 Phys. Rev. E 47, 3612.Google Scholar
[9]Amin, M. R., Morfill, G. E. and Shukla, P. K. 1998 Phys. Rev. E 58, 6517.CrossRefGoogle Scholar
[10]Gill, T. S. and Kaur, H. 2000 Pramana-J. Phys. 55, 855.Google Scholar
[11]Roychoudhury, R. and Mukherjee, S. 1997 Phys. Plasmas 4, 2305.Google Scholar
[12]Xie, B., He, K. and Huang, Z. 1999 Phys. Plasmas 6, 3808.CrossRefGoogle Scholar
[13]Nejoh, Y. N. 1997 Phys. Plasmas 4, 2813.Google Scholar
[14]Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 2610.Google Scholar
[15]Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 702.CrossRefGoogle Scholar
[16]Mamun, A. A. and Shukla, P. K. 2002 IEEE Trans. Plasma Sci. 30, 720.Google Scholar
[17]Mamun, A. A. and Cairns, R. A. 1996 J. Plasma Phys. 56, 175.Google Scholar
[18]Cairns, R. A., Mamun, A. A., Bingham, R. and Shukla, P. K. 1995 Phys. Scripta T13, 211.Google Scholar
[19]Mamun, A. A. 1997 Phy. Rev. E 55, 1852.Google Scholar
[20]Mamun, A. A. 1998 Phys. Plasmas 5, 322.Google Scholar
[21]Mamun, A. A. 1998 J. Plasma Phys. 59, 575.Google Scholar
[22]Mamun, A. A. 2000 Eur. Phys. J. D 11, 143.Google Scholar
[23]Gill, T. S., Kaur, H. and Saini, N. S. 2004 J. Plasma Phys. 70, 481.Google Scholar
[24]Alfven, H. and Carlqvist, P. 1967 Sov. Phys. 220, 1.Google Scholar
[25]Temerin, M., Cerny, K., Lotko, W. and Mozer, F. S. 1982 Phys. Rev. Lett. 48, 1175.Google Scholar
[26]Borovsky, L. E. 1984 J. Geophys. Res. 89, 2251.Google Scholar
[27]Carlqvist, P. 1986 IEEE Trans. Plasma Sci. 14, 794.CrossRefGoogle Scholar
[28]Mishra, M. K., Arora, A. K. and Chhabra, R. S. 2002 Phys. Rev. E 66, 46402.Google Scholar
[29]Goswami, K. S. and Bujarbarua, S. 1985 Phys. Lett. A 108, 149.Google Scholar
[30]Bharuthram, R. and Shukla, P. K. 1986 Phys. Fluids 29, 3214.Google Scholar
[31]Jain, S. L., Tiwari, R. S. and Sharma, S. R. 1990 Canad. J. Phys. 68, 474.Google Scholar
[32]Yadav, L. L. and Sharma, S. R. 1991 Phys. Scripta 43, 106.Google Scholar
[33]Shukla, P. K. and Mamun, A. A. 2001 IEEE Trans. Plasma. Sci. 29, 221.CrossRefGoogle Scholar
[34]Shukla, P. K. 2000 Phys. Plasmas 7, 1044.Google Scholar
[35]El-Labany, S. K., El-Taibany, W. F., Mamun, A. A. and Moslem, W. M. 2004 Phys. Plasmas 11, 926.Google Scholar
[36]El-Labany, S. K. and El-Taibany, W. F. 2003 Phys. Plasmas 10, 989.Google Scholar
[37]Roychoudhury, R. and Chatterjee, P. 1999 Phys. Plasmas 6, 406.Google Scholar
[38]Shukla, P. K. and Mamun, A. A. 2003 New J. Phys. 5, 171.Google Scholar
[39]Shukla, P. K. 2003 Phys. Plasmas 10, 1619.CrossRefGoogle Scholar
[40]Cairns, R. A., Mamun, A. A., Bingham, R., Bostrom, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Geophys. Rev. Lett. 22, 2709.CrossRefGoogle Scholar
[41]Cairns, R. A., Bingham, R., Dendy, R. O., Nairn, C. M. C., Shukla, P. K. and Mamun, A. A. 1995 J. Geophys. Res. 5, C643.Google Scholar
[42]Volosevich, A. V., Galperin, Yu. I. and Truhachev, F. M. 2002 Adv. Space Res. 30, 1677.Google Scholar
[43]Lundin, R., Eliasson, L., Hultqvist, B. and Stasiewicz, K. 1987 Geophys. Res. Lett. 14, 443.Google Scholar
[44]Hall, D. S., Chaloner, C. P., Bryant, D. A., Lepine, D. R. and Trikakis, , 1991 J. Geophys. Res. 96, 7869.Google Scholar
[45]Sakanaka, P. H. and Shukla, P. K. 2000 Phys. Scripta T84, 181.Google Scholar