Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T14:38:14.640Z Has data issue: false hasContentIssue false

Local analysis of extraordinary-mode stability properties for relativistic non-neutral electron flow in a planar diode

Published online by Cambridge University Press:  13 March 2009

Ronald C. Davidson
Affiliation:
Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Han S. Uhm
Affiliation:
Naval Surface Weapons Center, Silver Spring, Maryland 20910

Abstract

The extraordinary-mode eigenvalue equation is used to investigate the local stability properties of relativistic, non-neutral electron flow in a planar diode. The local stability analysis assumes gentle equilibrium gradients and short perturbation wavelengths. The lowest-order local dispersion relation is derived assuming that localized solutions for the eigenfunction exist, and stability properties are investigated numerically over a wide range of System parameters for perturbations with frequency small in comparison with the electron cyclotron frequency. It is found that the local dispersion relation supports three solutions in this frequency regime. One of the solutions corresponds to a stable diocotron mode driven by the local density gradient. The other two branches are found to exhibit instability over a wide range of electron density. These modes are electromagnetic in nature and require relativistic electron flow with velocity shear in order for instability to exist. Moreover, the growth rate of the unstable electromagnetic mode can be substantial (a few per cent of the electron cyclotron frequency).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bekefi, G. 1982 Appl. Phys. Lett. 40, 578.CrossRefGoogle Scholar
Briggs, R. J., Daugherty, J. D. & Levy, R. H. 1970 Phys. Fluids, 13, 421.CrossRefGoogle Scholar
Buneman, O., Levy, R. H. & Linson, L. M. 1966 J. Appl. Phys. 37, 3203.CrossRefGoogle Scholar
Chang, C. L., Antonsen, T. M., Ott, E. & Drobot, A. T. 1984 Phys. Fluids, 27, 2545.CrossRefGoogle Scholar
Chang, C. L., Ott, E., Antonsen, T. M. & Drobot, A. T. 1984 Phys. Fluids, 27, 2937.CrossRefGoogle Scholar
Chernin, D. & Lau, Y. Y. 1984 Phys. Fluids, 27, 2319.CrossRefGoogle Scholar
Davidson, R. C. 1974 Theory of Nonneutral Plasmas. Benjamin.Google Scholar
Davidson, R. C. 1985 a Phys. Fluids, 28, 377.CrossRefGoogle Scholar
Davidson, R. C. 1985 b J. Plasma Phys. 33, 157.CrossRefGoogle Scholar
Davidson, R. C. 1985 c Phys. Fluids, 28, 1937.CrossRefGoogle Scholar
Davidson, R. C., McMullin, W. A. & Tsang, K. T. 1984 b Phys. Fluids, 27, 233.CrossRefGoogle Scholar
Davidson, R. C. & Tsang, K. T. 1984 Phys. Rev. 29, 488.CrossRefGoogle Scholar
Davidson, R. C., Tsang, K. T. & Swegle, J. A. 1984 a Phys. Fluids, 27, 2332.CrossRefGoogle Scholar
Davidson, R. C. & Tsang, K. T. 1985 Phys. Fluids, 28, 1169.CrossRefGoogle Scholar
Davidson, R. C., Tsang, K. T. & Uhm, H. S. 1985 Phys. Rev. A, 32, 1044.CrossRefGoogle Scholar
Davidson, R. C. & Uhm, H. S. 1985 Phys. Rev. A, 32, 3554.CrossRefGoogle Scholar
Krall, N. A. 1968 Advances in Plasma Physics (ed. Simon, A. and Thompson, W. B.), vol. 1, p. 153. Interscience.Google Scholar
Kyhl, R. L. & Webster, H. F. 1956 IRE Trans. Electron Devices, 3, 172.CrossRefGoogle Scholar
Lau, Y. Y. 1984 Phys. Rev. Lett. 53, 395.CrossRefGoogle Scholar
Levy, R. H. 1965 Phys. Fluids, 8, 1288.CrossRefGoogle Scholar
MacFarlane, G. C. & Hay, H. G. 1950 Proc. Roy. Soc. B 63, 409.Google Scholar
Miller, R. B. 1982 Intense Charged Particle Beams. Plenum.Google Scholar
Orzechowski, T. J. & Bekefi, G. 1979 Phys. Fluids, 22, 978.CrossRefGoogle Scholar
Palevsky, A. & Bekefi, G. 1979 Phys. Fluids, 22, 986.CrossRefGoogle Scholar
Swegle, J. 1983 Phys. Fluids, 26, 1670.CrossRefGoogle Scholar
Swegle, J. & Ott, E. 1981 a Phys. Fluids, 24, 1821.CrossRefGoogle Scholar
Swegle, J. & Ott, E. 1981 b Phys. Rev. Lett. 46, 929.CrossRefGoogle Scholar
Uhm, H. S. & Davidson, R. C. 1985 Phys. Rev. A, 31, 2556.CrossRefGoogle Scholar
VanDevender, J. P., Quintenz, J. P., Leeper, R. J., Johnson, D. J. & Crow, J. T. 1981 J. Appl. Phys. 52, 4.CrossRefGoogle Scholar
VanDevender, J. P. et al. 1985 Nucl. Fusion Suppl. 3, 59.Google Scholar