Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T13:14:43.906Z Has data issue: false hasContentIssue false

Linear resonant interaction of an electromagnetic wave with a collisional inhomogeneous plasma

Published online by Cambridge University Press:  13 March 2009

J. Lacina
Affiliation:
Institute of Plasma Physics, Czechoslovak Academy of Sciences, Pod vodárenskou věži´ 4, 182 11 Prague 8, Czechoslovakia

Abstract

The time evolution to a steady state of the interaction of an obliquely incident P-polarized wave with an inhomogeneous collisional cold plasma is investigated. The two-dimensional numerical solutions presented show that the rate of energy absorption and the amplitude of the magnetic field do not depend on time during this evolution (after a short transient period). Using this important result, a simple analytical two-dimensional model solution for this evolution has been constructed. It is shown that this solution fuliils the energy conservation law and thus describes the transformation of wave energy into oscillatory and thermal energy during this process. An interesting analogy between this process and that of Landau damping follows from the analytic solution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, J. C., Serveniere, G. & Laval, G. 1982 Phys. Fluids, 25, 376.CrossRefGoogle Scholar
Auer, G., Sauer, K. & Baumgärtel, K. 1979 Phys. Rev. Lett. 42, 1744.CrossRefGoogle Scholar
Bulanov, S. V., Kovrizhnykh, L. M. & Sakharov, A. S. 1977 Zh. Eksp. Teor. Fiz. 72, 1809.Google Scholar
Catto, P. J. & Speziale, T. 1977 Phys. Fluids, 20, 167.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M., Lee, K., Lindman, E. L. & Morse, R. L. 1975 Phys. Rev. A 11, 679.CrossRefGoogle Scholar
Koch, P. & Albritton, J. 1974 Phys. Rev. Lett. 32, 1420.CrossRefGoogle Scholar
Kovrizhnykh, L. M. & Sakharov, A. S. 1980 Fiz. Plazmy, 6, 150.Google Scholar
Kull, H. J. 1981 Max-Planck Institut für Quantenoptik, Garching, MPQ 50.Google Scholar
Lacina, J. 1972 Plasma Phys. 4, 605.CrossRefGoogle Scholar
Lacina, J. 1975 Czech. J. Phys. B 25, 10.CrossRefGoogle Scholar
Lacina, J. 1987 Institute of Plasma Physics, Prague, Internal Report 19/87.Google Scholar
Lacina, J. & Preinhaelter, J. 1988 Czech. J. Phys. B 38, 166.CrossRefGoogle Scholar
Morales, G. J. & Lee, Y. C. 1977 Phys. Fluids, 20, 1135.CrossRefGoogle Scholar
Mueller, M. M. 1973 Phys. Rev. Lett. 30, 582.CrossRefGoogle Scholar
Rae, I. C. 1982 Plasma Phys. 24, 133.CrossRefGoogle Scholar
Silin, V. P. 1965 Soviet Phys. JETP, 20, 1510.Google Scholar
Speziale, T. & Catto, P. J. 1977 Phys. Fluids, 20, 990.CrossRefGoogle Scholar
Speziale, T. & Catto, P. J. 1978 Phys. Fluids, 21, 2063.CrossRefGoogle Scholar