Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T15:17:53.791Z Has data issue: false hasContentIssue false

Linear gyrokinetic studies with ORB5 en route to pair plasmas

Published online by Cambridge University Press:  21 May 2019

J. Horn-Stanja*
Affiliation:
Max Planck Institute for Plasma Physics, 85748 Garching, Germany
A. Biancalani
Affiliation:
Max Planck Institute for Plasma Physics, 85748 Garching, Germany
A. Bottino
Affiliation:
Max Planck Institute for Plasma Physics, 85748 Garching, Germany
A. Mishchenko
Affiliation:
Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany
*
Email address for correspondence: [email protected]

Abstract

The model of the global gyrokinetic particle-in-cell code ORB5 has been extended for the study of pair plasmas. This has been done by including the physics of the Debye shielding, by including the electron polarization density and by retaining the effects of the electron finite Larmor radius. This model is verified against previous numerical results for the cyclone base case tokamak scenario in deuterium plasmas, and for local pair plasma simulations. The linear dynamics of temperature-gradient driven instabilities and geodesic acoustic modes is investigated. Mass dependencies for different Debye lengths are studied.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, M., Abiuso, P. & Dorland, W. 2018 Turbulent heating in an inhomogeneous magnetized plasma slab. J. Plasma Phys. 84, 905840306.Google Scholar
Biancalani, A., Bottino, A., Lauber, P. & Zarzoso, D. 2014 Numerical validation of the electromagnetic gyrokinetic code NEMORB on global axisymmetric modes. Nucl. Fusion 54, 104004.Google Scholar
Biancalani, A. et al. 2017 Cross-code gyrokinetic verification and benchmark on the linear collisionless dynamics of the geodesic acoustic mode. Phys. Plasmas 24, 062512.Google Scholar
Bottino, A., Vernay, T., Scott, B., Brunner, S., Hatzky, R., Jolliet, S., McMillan, B. F., Tran, T. M. & Villard, L. 2011 Global simulations of tokamak microturbulence: finite- $\unicode[STIX]{x1D6FD}$ effects and collisions. Plasma Phys. Control. Fusion 53, 124027.Google Scholar
Brizard, A. J. & Hahm, T. S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421.Google Scholar
Dimits, A. M. et al. 2000 Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7, 969.Google Scholar
Dorland, W., Jenko, F., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient turbulence. Phys. Rev. Lett. 85, 5579.Google Scholar
Görler, T., Tronko, N., Hornsby, W. A., Bottino, A., Kleiber, R., Norscini, C., Grandgirard, V., Jenko, F. & Sonnendrücker, E. 2016 Intercode comparison of gyrokinetic global electromagnetic modes. Phys. Plasmas 23, 072503.Google Scholar
Helander, P. 2014 Microstability of magnetically confined electron-positron plasmas. Phys. Rev. Lett. 113, 135003.Google Scholar
Helander, P. & Connor, J. W. 2016 Gyrokinetic stability theory of electron-positron plasmas. J. Plasma Phys. 82, 905820301.Google Scholar
Hergenhahn, U. et al. 2018 Progress of the APEX experiment for creation of an electron-positron pair plasma. AIP Conf. Proc. 1928, 020004.Google Scholar
Horn-Stanja, J. et al. 2018 Confinement of positrons exceeding 1 s in a supported magnetic dipole trap. Phys. Rev. Lett. 121, 235003.Google Scholar
Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient driven turbulence. Phys. Plasmas 7, 19041910.Google Scholar
Jolliet, S., Bottino, A., Angelino, P., Hatzky, R., Tran, T. M., McMillan, B. F., Sauter, O., Appert, K., Idomura, Y. & Villard, L. 2007 A global collisionless PIC code in magnetic coordinates. Comput. Phys. Commun. 177, 409425.Google Scholar
Kennedy, D., Mishchenko, A., Xanthopoulos, P. & Helander, P. 2018 Linear electrostatic gyrokinetics for electron–positron plasmas. J. Plasma Phys. 84, 905840606.Google Scholar
Kotschenreuther, M., Rewoldt, G. & Tang, W. M. 1995 Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities. Comput. Phys. Commun. 88, 128.Google Scholar
Lee, W. 1987 Gyrokinetic particle simulation model. J. Comput. Phys. 72, 243.Google Scholar
Mishchenko, A., Plunk, G. G. & Helander, P. 2018a Electrostatic stability of electron–positron plasmas in dipole geometry. J. Plasma Phys. 84, 905840201.Google Scholar
Mishchenko, A., Zocco, A., Helander, P. & Könies, A. 2018b Gyrokinetic stability of electron–positron–ion plasmas. J. Plasma Phys. 84, 905840116.Google Scholar
Novikau, I., Biancalani, A., Bottino, A., Conway, G. D., Gürcan, Ö. D., Manz, P., Morel, P., Poli, E. & Di Siena, A. 2017 Linear gyrokinetic investigation of the geodesic acoustic modes in realistic tokamak configurations. Phys. Plasmas 24, 122117.Google Scholar
Pedersen, T. S., Boozer, A. H., Dorland, W., Kremer, J. P. & Schmitt, R. 2003 Prospects for the creation of positron–electron plasmas in a non-neutral stellarator. J. Phys. B 36, 10291039.Google Scholar
Pedersen, T. S., Danielson, J. R., Hugenschmidt, C., Marx, G., Sarasola, X., Schauer, F., Schweikhard, L., Surko, C. M. & Winkler, E. 2012 Plans for the creation and studies of electron–positron plasmas in a stellarator. New J. Phys. 14, 035010.Google Scholar
Rosenbluth, M. & Hinton, F. 1998 Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks. Phys. Rev. Lett. 80, 724.Google Scholar
Rudakov, L. I. & Sagdeev, R. Z. 1962 Microscopic instabilities of spatially inhomogeneous plasma in a magnetic field. Nucl. Fusion Suppl. 2, 481.Google Scholar
Saitoh, H., Stanja, J., Stenson, E. V., Hergenhahn, U., Niemann, H., Pedersen, T. S., Stoneking, M. R., Piochacz, C. & Hugenschmidt, C. 2015 Efficient injection of an intense positron beam into a dipole magnetic field. New J. Phys. 17, 103038.Google Scholar
Stenson, E. V. et al. 2018 Lossless positron injection into a magnetic dipole trap. Phys. Rev. Lett. 121, 235005.Google Scholar
Stoneking, M. R. et al. 2018 Toward a compact levitated superconducting dipole for positron-electron plasma confinement. AIP Conf. Proc. 1928, 020015.Google Scholar
Tronko, N., Bottino, A. & Sonnendrücker, E. 2016 Second order gyrokinetic theory for particle-in-cell codes. Phys. Plasmas 23, 082505.Google Scholar
Tsytovich, V. & Wharton, C. B. 1978 Laboratory electron–positron plasma – a new research object. Comments Plasma Phys. Control. Fusion 4, 91100.Google Scholar
Winsor, N., Johnson, J. L. & Dawson, J. M. 1968 Geodesic acoustic waves in hydromagnetic systems. Phys. Fluids 11, 2448.Google Scholar
Zhang, H. S. & Lin, Z. 2010 Trapped electron damping of geodesic acoustic mode. Phys. Plasmas 17, 072502.Google Scholar
Zonca, F. & Chen, L. 2008 Radial structures and nonlinear excitation of geodesic acoustic modes. Europhys. Lett. 83, 35001.Google Scholar