Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T14:25:38.629Z Has data issue: false hasContentIssue false

Linear and nonlinear obliquely propagating ion-acoustic waves in magnetized negative ion plasma with non-thermal electrons

Published online by Cambridge University Press:  20 June 2013

M. K. MISHRA
Affiliation:
Department of Physics, University of Rajasthan, Jaipur 302004, Rajasthan, India ([email protected])
S. K. JAIN
Affiliation:
Department of Physics, University of Rajasthan, Jaipur 302004, Rajasthan, India ([email protected])

Abstract

Ion-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg–de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (αc), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of αc decreases with increase in γ.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asbridge, J. R., Bame, S. J. and Strong, I. B. 1968 J. Geophy. Res. 73, 5777.CrossRefGoogle Scholar
Bacal, M. and Hamilton, G. W. 1979 Phys. Rev. Lett. 42, 1538.CrossRefGoogle Scholar
Barman, S. N. and Talukdar, A. 2010 Int. J. Appl. Math. Mech. 6, 47.Google Scholar
Cairns, R. A., Mamun, A. A., Bingham, R., Bostrom, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Geophys. Res. Lett. 22, 2709.CrossRefGoogle Scholar
Cairns, R. A., Mamun, A. A., Bingham, R. and Shukla, P. K. 1996 Phys. Scripta T63, 80.CrossRefGoogle Scholar
Chaizy, P. H., Reme, H., Sauvayd, J. A., D'uston, C., Lin, R. P., Larson, D. E., Mitchell, D. L., Anderson, K. A., Carlson, C. W., Korth, A., et al. 1991 Nature (London) 349, 393.CrossRefGoogle Scholar
Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., Waite, J. H. Jr. and Sittler, E. C. 2007 Geophys. Res. Lett. 34, L22103.Google Scholar
Cooney, J. L., Aossey, D. W., Williamst, J. E., Gavin, M. T., Kim, H. S., Hsu, Y. C., Scheller, A. and Lonngren, K. E. 1993 Plasma Sources Sci. Technol. 2, 73.CrossRefGoogle Scholar
Cooney, J. L., Gavin, M. T. and Lonngren, K. E. 1991 Phys. Fluids B3 (10), 2758.CrossRefGoogle Scholar
D'Angelo, N., Von Goeler, S. and Ohe, T. 1966 Phys. Fluids 9, 1605.CrossRefGoogle Scholar
Das, G. C. and Tagare, S. G. 1975 Plasma Phys. 17, 1025.CrossRefGoogle Scholar
Dovner, P. O., Eriksson, A. I., Bostrom, R. and Holback, B. 1994 Geophys. Res. Lett. 21, 1827.CrossRefGoogle Scholar
Dudik, J., Dzifcakowa, E., Karlicky, M. and Kulinova, A. 2011 Astron. Astrophys. 529, A103.CrossRefGoogle Scholar
El-Labany, S. K., El-Warranki, S. A. and Moslem, W. M. 2000 J. pPlasma Phys. 63, 343.CrossRefGoogle Scholar
El-Labany, S. K., Sabry, R., El-Taibany, W. F. and Elghmaz, E. A. 2010 Plasma Phys. 17, 042301.CrossRefGoogle Scholar
El-Taibany, W. F. and Tribeche, M. 2012 Plasma Phys. 19, 024507.CrossRefGoogle Scholar
Gill, T. S., Bala, P., Kaur, H., Saini, N. S., Bansal, S. and Kaur, J. 2004 Eur. Phys. J. D 31, 91.Google Scholar
Gottscho, R. A. and Gaebe, C. E. 1986 IEEE Trans. Plasma Sci. 14, 92.CrossRefGoogle Scholar
Hall, D. S., Chaloner, C. P., Bryant, D. A., Lepine, D. R. and Trikakis, V. P. 1991 J. Geophys. Res. 96, 7869.CrossRefGoogle Scholar
Ichiki, R., Shindo, M., Yoshimura, S., Watanbe, T. and Kawai, Y. 2001 Phys. Plasmas 8, 4275.CrossRefGoogle Scholar
Ichiki, R., Yoshimura, S., Watanbe, T., Nakamura, Y. and Kawai, Y. 2002 Phys. Plasmas 9, 4481.CrossRefGoogle Scholar
Ikezi, H., Taylor, R. J. and Baker, D. R. 1970 Phys. Rev. Lett. 25, 11.CrossRefGoogle Scholar
Islam, Sk. A., Bandopadhyay, A., and Das, K. P. 2009 Phys. Plasmas 16, 022307.CrossRefGoogle Scholar
Liberman, M. A. and Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn.New York, NY: Wiley.CrossRefGoogle Scholar
Ludwig, G. O., Ferreira, J. L. and Nakamura, Y. 1984 Phys. Rev. Lett. 52, 275.CrossRefGoogle Scholar
Lundin, R., Eliasson, L., Hultqvist, B. and Stasiewicz, K. 1987 Geophy. Res. Lett. 14, 443.CrossRefGoogle Scholar
Lundin, R., Zakharov, A., Pellinen, R., Borg, H., Hultqvist, B., Pissarenko, N., Dubinin, E. M., Barabash, S. W., Liede, I. and Koskimen, H. 1989 Nature (London) 341, 609.CrossRefGoogle Scholar
Massey, H. 1976 Negative Ions, 3rd edn.Cambridge, UK: Cambridge University Press, 663 pp.Google Scholar
Mishra, M. K., Chhabra, R. S. and Sharma, S. R. 1994 J. Plasma Phys. 52, 409.CrossRefGoogle Scholar
Nakamura, Y., Odagiri, T. and Tsukabayashi, I. 2001 Plasma Phys. Control. Fusion 39, 115004.Google Scholar
Nakamura, Y. and Tsukabayashi, I. 1984 Phys. Rev. Lett. 52, 2356.CrossRefGoogle Scholar
Pillay, S. R. and Verheest, F. 2005 J. Plasma Phys. 71, 177.CrossRefGoogle Scholar
Portnyagain, Yu. I., Klyuev, O. F., Shidlovsky, A. A., Evdokimov, A. N., Buzdigar, T. W., Matukhin, P. G., Pasynkov, S. G., Shamshev, K. N., Sokolov, V. V. and Semkin, N. D. 1991 Adv. Space Res. 11, 89.CrossRefGoogle Scholar
Rizzato, F. B., Schneider, R. S. and Dillenburg, D. 1987 Plasma Phys. Control. Fusion 29, 1127.CrossRefGoogle Scholar
Sabry, R., Moslem, W. M. and Shukla, P. K. 2009 Plasma Phys. 16, 032302.CrossRefGoogle Scholar
Saito, M., Watanbe, S. and Tanaka, H. 1984 J. Phys. Soc. Jpn. 53, 2304.CrossRefGoogle Scholar
Stverak, S., Maksimovic, M., Travenicek, P. M., Marsch, E., Fazakerley, A. N. and Scime, E. E. 2009 J. Geophys. Res. 114, A05104. doi:10.1029/2008JA013883.CrossRefGoogle Scholar
Swider, W. 1988 Ionosphere Modelling (ed. Korenkov, J. N.). Berlin 14197 Germany: Birkhauser Basel, 403 pp.CrossRefGoogle Scholar
Tagare, S. G. and Reddy, R. V. 1987 Plasma Phys. Control. Fusion 29, 671.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Watanabe, S. 1984 J. Phys. Soc. Jpn. 53, 952.Google Scholar
Yadav, L. L. and Sharma, S. R. 1990 Phys. Lett. A 150, 397.CrossRefGoogle Scholar