Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T13:47:21.273Z Has data issue: false hasContentIssue false

Linear and nonlinear coupled Alfvén-Varma modes

Published online by Cambridge University Press:  13 March 2009

P. K. Shukla
Affiliation:
Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, D-4630 Bochum l, Federal Republic of Germany
L. Stenflo
Affiliation:
Department of Plasma Physics, Umeå University, S-90187 Umeå, Sweden

Abstract

Starting from the particle continuity equation and the guiding-centre model for the particle velocity, using an equation of state in the form of the conservation of the ion magnetic moment, as well as Ohm's and Ampère's laws, a set of four coupled nonlinear equations has been derived to investigate the properties of magnetic turbulence in plasmas with hot ions and cold electrons. It is shown that finite-β effects can cause a linear coupling between the Alfvén and Varma modes in a weakly non-uniform plasma immersed in an inhomogeneous magnetic field. In the nonlinear regime the stationary solutions of the four field equations are found to be double vortices. Implications of our results for enhanced magnetic fluctuation and anomalous transport in a mirror reactor are pointed out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, O. A., Birdsall, D. H., Damm, C. G., Foote, J. H., Futch, A. H., Goodman, R. K., Gordon, F. H., Hamilton, G. W., Hooper, E. B., Hunt, A. L., Osher, E. & Parter, G. D. 1975 Proceedings of 5th International Conference on Plasma Physics and Controlled Nuclear Fusion Research 1974, vol. 1, p. 379. IAEA Vienna.Google Scholar
Arsenin, V. V., Zhiltsov, V. A., Kosarev, P. M., Makashin, I. N., Panov, D. A., Skovoroda, A. A. & Shcherbakov, A. G. 1987 Soviet J. Plasma Phys. 13, 87.Google Scholar
Avinash, & Varma, R. K. 1987 Nucl. Fusion, 27, 1047.Google Scholar
Colchin, R. J., Dunlop, J. L. & Postma, H. 1970 Phys. Fluids, 13, 501.Google Scholar
Damm, C. C., Foote, J. H. & Futch, A. H. 1969 Proceedings of 3rd International Conference, on Plasma Physics and Controlled Nuclear Fusion Research, vol. 2, p. 253. IAEA, Vienna.Google Scholar
Gribkov, V. M. 1977 Soviet J. Plasma Phys. 3, 167.Google Scholar
Kono, M. & Miyashita, E. 1988 Phys. Fluids, 31, 326.Google Scholar
Simon, A. & Weng, C. I. 1972 Phys. Fluids, 15, 2341.Google Scholar
Varma, R. K. 1967 Nucl. Fusion, 7, 57.CrossRefGoogle Scholar
Varma, R. K. 1981 Modern Plasma Physics, p. 147. IAEA, Vienna.Google Scholar
Yu, M. Y., Shukla, P. K. & Varma, R. K. 1985 Phys. Fluids, 28, 2925.Google Scholar
Zhiltsov, V. A., Kosahev, P. M., Likhtenshtein, V. K., Panov, D. A., Chuyanov, V. Y. & Shcherbakov, A. G. 1977 Soviet J. Plasma Phys. 3, 20.Google Scholar