Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T01:42:05.186Z Has data issue: false hasContentIssue false

Laser-accelerated protons using density gradients in hydrogen plasma spheres

Published online by Cambridge University Press:  12 August 2021

Ankita Bhagawati*
Affiliation:
Department of Physics, Tezpur University, Tezpur, Assam 784028, India
Nilakshi Das
Affiliation:
Department of Physics, Tezpur University, Tezpur, Assam 784028, India
*
Email address for correspondence: [email protected]

Abstract

The effect of different density profiles on micron-sized hydrogen plasma spheres is investigated when the plasma gets irradiated with an ultrashort circularly polarized laser. In this study, we show that significant improvement in the characteristics of the accelerated protons viz. maximum proton energy, as well as their monoenergetic behaviour, is possible by using a plasma sphere having a tailored density profile. A linear-shaped density inhomogeneity is introduced in the plasma sphere such that the density is peaked at the centre and gradually dropping outwards. The density gradient is tuned by changing the peak density at the centre. The optimum regime of steepness is found for the maximum energy attained by the protons where the target is opaque enough for the radiation pressure to play its role, however not too opaque to inhibit efficient target heating. A novel Gaussian-shaped density profile is suggested which plays an important role in suppressing the sheath field. With a decreased rear-side field, a visible improvement of the monoenergetic feature of the protons is observed.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A., Okada, T. & Toraya, S. 2002 Ultra-intense laser pulse absorption and fast particles generation at interaction with inhomogeneous foil target. In AIP Conference Proceedings (ed. Nakajima, K. & Deguchi, M.), vol. 634, pp. 303310. American Institute of Physics.CrossRefGoogle Scholar
Andreev, A., Platonov, K.Y., Okada, T. & Toraya, S. 2003 Nonlinear absorption of a short intense laser pulse in a nonuniform plasma. Phys. Plasmas 10 (1), 220226.CrossRefGoogle Scholar
Andreev, A., Sonobe, R., Kawata, S., Miyazaki, S., Sakai, K., Miyauchi, K., Kikuchi, T., Platonov, K. & Nemoto, K. 2006 Effect of a laser prepulse on fast ion generation in the interaction of ultra-short intense laser pulses with a limited-mass foil target. Plasma Phys. Control. Fusion 48 (11), 1605.CrossRefGoogle Scholar
Antici, P., Boella, E., Chen, S., Andrews, D., Barberio, M., Böker, J., Cardelli, F., Feugeas, J., Glesser, M., Nicolaï, P. and others 2017 Acceleration of collimated 45 MeV protons by collisionless shocks driven in low-density, large-scale gradient plasmas by a $10^{20}$W/cm$^{2}$, 1 $\mathrm {\mu }$m laser. Sci. Rep. 7 (1), 19.CrossRefGoogle Scholar
Bhagawati, A., Kuri, D.K. & Das, N. 2019 Proton acceleration due to laser plasma interactions from mass-limited spherical targets. Phys. Plasmas 26 (9), 093106.CrossRefGoogle Scholar
Boella, E., Fiúza, F., Novo, A.S., Fonseca, R. & Silva, L. 2018 Ion acceleration in electrostatic collisionless shock: on the optimal density profile for quasi-monoenergetic beams. Plasma Phys. Control. Fusion 60 (3), 035010.CrossRefGoogle Scholar
Bychenkov, V.Y., Tikhonchuk, V. & Tolokonnikov, S. 1999 Nuclear reactions triggered by laser-accelerated high-energy ions. J. Expl Theor. Phys. 88 (6), 11371142.CrossRefGoogle Scholar
Cialfi, L., Fedeli, L. & Passoni, M. 2016 Electron heating in subpicosecond laser interaction with overdense and near-critical plasmas. Phys. Rev. E 94 (5), 053201.CrossRefGoogle ScholarPubMed
Denavit, J. 1992 Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69 (21), 3052.CrossRefGoogle ScholarPubMed
d'Humières, E., Antici, P., Glesser, M., Boeker, J., Cardelli, F., Chen, S., Feugeas, J., Filippi, F., Gauthier, M., Levy, A. and others 2013 Investigation of laser ion acceleration in low-density targets using exploded foils. Plasma Phys. Control. Fusion 55 (12), 124025.CrossRefGoogle Scholar
d'Humières, E., Lefebvre, E., Gremillet, L. & Malka, V. 2005 Proton acceleration mechanisms in high-intensity laser interaction with thin foils. Phys. Plasmas 12 (6), 062704.CrossRefGoogle Scholar
Feng-Chao, W. 2013 Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration. Chin. Phys. B 22 (12), 124102.Google Scholar
Fiúza, F., Stockem, A., Boella, E., Fonseca, R., Silva, L., Haberberger, D., Tochitsky, S., Gong, C., Mori, W.B. & Joshi, C. 2012 Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett. 109 (21), 215001.CrossRefGoogle ScholarPubMed
Forslund, D. & Shonk, C. 1970 Formation and structure of electrostatic collisionless shocks. Phys. Rev. Lett. 25 (25), 1699.CrossRefGoogle Scholar
Gauthier, M., Levy, A., d'Humieres, E., Glesser, M., Albertazzi, B., Beaucourt, C., Breil, J., Chen, S., Dervieux, V., Feugeas, J. and others 2014 Investigation of longitudinal proton acceleration in exploded targets irradiated by intense short-pulse laser. Phys. Plasmas 21 (1), 013102.CrossRefGoogle Scholar
Grismayer, T. & Mora, P. 2006 Influence of a finite initial ion density gradient on plasma expansion into a vacuum. Phys. Plasmas 13 (3), 032103.CrossRefGoogle Scholar
Hegelich, B.M., Albright, B., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R. & Fernández, J. 2006 Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439 (7075), 441444.CrossRefGoogle ScholarPubMed
Henig, A., Kiefer, D., Geissler, M., Rykovanov, S.G., Ramis, R., Hörlein, R., Osterhoff, J., Major, Z., Veisz, L., Karsch, S. and others 2009 Laser-driven shock acceleration of ion beams from spherical mass-limited targets. Phys. Rev. Lett. 102 (9), 095002.CrossRefGoogle ScholarPubMed
Hilz, P., Ostermayr, T., Huebl, A., Bagnoud, V., Borm, B., Bussmann, M., Gallei, M., Gebhard, J., Haffa, D., Hartmann, J. and others 2018 Isolated proton bunch acceleration by a petawatt laser pulse. Nat. Commun. 9 (1), 19.CrossRefGoogle ScholarPubMed
Khoroshkov, V. & Minakova, E. 1998 Proton beams in radiotherapy. Eur. J. Phys. 19 (6), 523.CrossRefGoogle Scholar
Kluge, T., Enghardt, W., Kraft, S., Schramm, U., Zeil, K., Cowan, T. & Bussmann, M. 2010 Enhanced laser ion acceleration from mass-limited foils. Phys. Plasmas 17 (12), 123103.CrossRefGoogle Scholar
Lecz, Z. & Andreev, A. 2015 Shock wave acceleration of protons in inhomogeneous plasma interacting with ultrashort intense laser pulses. Phys. Plasmas 22 (4), 043103.CrossRefGoogle Scholar
Macchi, A. 2013 A Superintense Laser-Plasma Interaction Theory Primer. Springer Science and Business Media.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. 2005 Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94 (16), 165003.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., d'Humières, E., Ferrand, R., Grillon, G., Albaret, C., Meyroneinc, S., Chambaret, J.-P., Antonetti, A. and others 2004 Practicability of protontherapy using compact laser systems. Med. Phys. 31 (6), 15871592.CrossRefGoogle ScholarPubMed
Murakami, M., Hishikawa, Y., Miyajima, S., Okazaki, Y., Sutherland, K.L., Abe, M., Bulanov, S.V., Daido, H., Esirkepov, T.Z., Koga, J. and others 2008 Radiotherapy using a laser proton accelerator. In AIP Conference Proceedings (ed. S.V. Bulanov & H. Daido), vol. 1024, pp. 275–300. American Institute of Physics.Google Scholar
Novo, A.S., Kaluza, M., Fonseca, R. & Silva, L. 2016 Optimizing laser-driven proton acceleration from overdense targets. Sci. Rep. 6, 29402.CrossRefGoogle Scholar
Obst, L., Göde, S., Rehwald, M., Brack, F.-E., Branco, J., Bock, S., Bussmann, M., Cowan, T. E., Curry, C.B., Fiuza, F. and others 2017 Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets. Sci. Rep. 7 (1), 19.CrossRefGoogle ScholarPubMed
Ostermayr, T.M., Haffa, D., Hilz, P., Pauw, V., Allinger, K., Bamberg, K.-U., Böhl, P., Bömer, C., Bolton, P., Deutschmann, F. and others 2016 Proton acceleration by irradiation of isolated spheres with an intense laser pulse. Phys. Rev. E 94 (3), 033208.CrossRefGoogle ScholarPubMed
Pak, A., Kerr, S., Lemos, N., Link, A., Patel, P., Albert, F., Divol, L., Pollock, B., Haberberger, D., Froula, D. and others 2018 Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using 1 $\mathrm {\mu }$m lasers. Phys. Rev. Accel. Beams 21 (10), 103401.CrossRefGoogle Scholar
Pšikal, J., Limpouch, J., Kawata, S. & Andreev, A. 2006 Pic simulations of femtosecond interactions with mass-limited targets. Czech. J. Phys. 56 (2), B515B521.CrossRefGoogle Scholar
Pukhov, A. 2001 Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Phys. Rev. Lett. 86 (16), 3562.CrossRefGoogle ScholarPubMed
Remington, B.A., Drake, R.P., Takabe, H. & Arnett, D. 2000 A review of astrophysics experiments on intense lasers. Phys. Plasmas 7 (5), 16411652.CrossRefGoogle Scholar
Roth, M., Cowan, T., Key, M., Hatchett, S., Brown, C., Fountain, W., Johnson, J., Pennington, D., Snavely, R., Wilks, S. and others 2001 Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86 (3), 436.CrossRefGoogle ScholarPubMed
Schlegel, T., Naumova, N., Tikhonchuk, V., Labaune, C., Sokolov, I. & Mourou, G. 2009 Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Phys. Plasmas 16 (8), 083103.CrossRefGoogle Scholar
Schwoerer, H., Pfotenhauer, S., Jäckel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K. & Esirkepov, T. 2006 Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439 (7075), 445.CrossRefGoogle ScholarPubMed
Sentoku, Y., Bychenkov, V.Y., Flippo, K., Maksimchuk, A., Mima, K., Mourou, G., Sheng, Z. & Umstadter, D. 2002 High-energy ion generation in interaction. of short laser pulse with high-density plasma. Appl. Phys. B 74 (3), 207215.CrossRefGoogle Scholar
Sentoku, Y., Cowan, T., Kemp, A. & Ruhl, H. 2003 High energy proton acceleration in interaction of short laser pulse with dense plasma target. Phys. Plasmas 10 (5), 20092015.CrossRefGoogle Scholar
Sgattoni, A., Londrillo, P., Macchi, A. & Passoni, M. 2012 Laser ion acceleration using a solid target coupled with a low-density layer. Phys. Rev. E 85 (3), 036405.CrossRefGoogle ScholarPubMed
Silva, L.O., Marti, M., Davies, J.R., Fonseca, R.A., Ren, C., Tsung, F.S. & Mori, W.B. 2004 Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92 (1), 015002.CrossRefGoogle ScholarPubMed
Stockem, A., Boella, E., Fiuza, F. & Silva, L. 2013 Relativistic generalization of formation and ion-reflection conditions in electrostatic shocks. Phys. Rev. E 87 (4), 043116.CrossRefGoogle ScholarPubMed
Svedung Wettervik, B., DuBois, T. & Fülöp, T. 2016 Vlasov modelling of laser-driven collisionless shock acceleration of protons. Phys. Plasmas 23 (5), 053103.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. 1994 Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1 (5), 16261634.CrossRefGoogle Scholar
Upadhyay, A., Patel, K., Rao, B., Naik, P. & Gupta, P. 2012 Three-dimensional simulation of laser–plasma-based electron acceleration. Pramana 78 (4), 613623.CrossRefGoogle Scholar
Weng, S., Murakami, M., Mulser, P. & Sheng, Z. 2012 Ultra-intense laser pulse propagation in plasmas: from classic hole-boring to incomplete hole-boring with relativistic transparency. New J. Phys. 14 (6), 063026.CrossRefGoogle Scholar
Weng, S., Sheng, Z., Murakami, M., Chen, M., Liu, M., Wang, H., Yuan, T. & Zhang, J. 2018 Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition. Matt. Radiat. Extrem. 3 (1), 2839.CrossRefGoogle Scholar
Wilks, S., Langdon, A., Cowan, T., Roth, M., Singh, M., Hatchett, S., Key, M., Pennington, D., MacKinnon, A. & Snavely, R. 2001 Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8 (2), 542549.CrossRefGoogle Scholar
Yang, Y., Zhou, C., Huang, T., He, M., Wu, S., Cai, T., Qiao, B., Yu, M., Ruan, S. & He, X.-T. 2020 Manipulating laser-driven proton acceleration with tailored target density profile. Plasma Phys. Control. Fusion 62(8), 085008.CrossRefGoogle Scholar
Zhang, W., Qiao, B., Huang, T., Shen, X., You, W., Yan, X., Wu, S., Zhou, C. & He, X. 2016 Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas. Phys. Plasmas 23 (7), 073118.CrossRefGoogle Scholar