Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-07T12:49:01.711Z Has data issue: false hasContentIssue false

Laser wakefield compression and acceleration of externally injected electron bunches in guiding structures

Published online by Cambridge University Press:  03 January 2013

N. E. ANDREEV
Affiliation:
Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow, Russia ([email protected]) Moscow Institute of Physics and Technology (State University), Moscow, Russia
V. E. BARANOV
Affiliation:
Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow, Russia ([email protected])
B. CROS
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, CNRS-Universite Paris-Sud 11, Orsay, France
G. MAYNARD
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, CNRS-Universite Paris-Sud 11, Orsay, France
P. MORA
Affiliation:
Centre de Physique Theorique, CNRS, Ecole Polytechnique, Palaiseau Cedex, France
M. E. VEYSMAN
Affiliation:
Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow, Russia ([email protected])

Abstract

For the considered scheme of the external electron bunch injection in front of a laser pulse, the influence of the nonlinear driving laser pulse dynamics and electron bunch self-action to the processes of electron bunch compression and acceleration in the laser wakefield is analyzed. Self-consistent modelling results confirm that the nonlinear laser pulse dynamics limits the bunch compression due to variations of the phase velocity of the wake. A growth of the injected bunch charge leads to some extent to an increase of the trapped and accelerated bunch charge and to decrease of the trapped bunch radius and emittance due to increased self-focusing bunch. The three-dimensional theoretical model is elaborated and used to describe the propagation of laser pulses in dielectric capillary waveguides under imperfect coupling and focusing conditions with broken cylindrical symmetry. The role of cone entrances to the cylindrical part of a capillary is analyzed, and it is demonstrated that matching cones can considerably increase the transmission of laser pulses through the capillary, but cannot mitigate the requirements on the precision of the laser pulse focusing into a capillary. In order to avoid a speckle structure and strong transverse gradients of the fields, which can prevent the process of regular electron bunch acceleration, one has to ensure a small laser angle of incidence into the capillary not exceeding 1 mrad.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abuazoum, S., Wiggins, S. M., Ersfeld, B., Hart, K., Vieux, G., Yang, X., Welsh, G. H., Issac, R. C., Reijnders, M. P., Jones, D. R.et al. 2012 Linearly tapered discharge capillary waveguides as a medium for a laser plasma wakefield accelerator. Appl. Phys. Lett. 100, 014106.CrossRefGoogle Scholar
Andreev, N. E., Baranov, V. E., Cros, B., Fortov, V. E., Kuznetsov, S. V., Maynard, G. and Mora, P. 2011a Electron bunch compression and acceleration in laser wakefield. Nucl. Instrum. Methods Phys. Res. A 653, 6671.CrossRefGoogle Scholar
Andreev, N. E., Cros, B., Maynard, G., Mora, P. and Vojda, F. 2008 Coupling efficiency of intense laser pulses to capillary tubes for laser wakefield acceleration. IEEE Trans. Plasma Sci. 36, 17461750.CrossRefGoogle Scholar
Andreev, N. E., Gorbunov, L. M., Kirsanov, V. I., Nakajima, K. and Ogata, A. 1997 Structure of the wake field in plasma channels. Phys. Plasmas 4, 1145.CrossRefGoogle Scholar
Andreev, N. E., Kirsanov, V. I. and Gorbunov, L. M. 1995 Stimulated processes and self-modulation of a short intense laser pulse in the laser wake-field accelerator. Phys. Plasmas 2, 2573.CrossRefGoogle Scholar
Andreev, N. E. and Kuznetsov, S. V. 2003 Guided propagation of short intense laser pulses and electron acceleration. Plasma Phys. Control. Fusion 45 (12A), 39.CrossRefGoogle Scholar
Andreev, N. E. and Kuznetsov, S. V. 2008 Laser wakefield acceleration of finite charge electron bunches. IEEE Trans. Plasma Sci. 36 (4), 17651772.CrossRefGoogle Scholar
Andreev, N. E., Kuznetsov, S. V., Cros, B., Fortov, V. E., Maynard, G. & Mora, P. 2011b Laser wakefield acceleration of supershort electron bunches in guiding structures. Plasma Phys. Control. Fusion 53, 014001.CrossRefGoogle Scholar
Courtois, C., Couairon, A., Cros, B., Marques, J. R. and Matthieussent, G. 2001 Propagation of intense ultrashort laser pulses in a plasma-filled capillary tube: simulations and experiments. Phys. Plasmas 8, 3445.CrossRefGoogle Scholar
Esarey, E., Schroeder, C. B. and Leemans, W. P. 2009 Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1996 Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Gorbunov, L. M. and Kirsanov, V. I. 1987 Excitation of plasma-waves by short electromagnetic-wave packets. Sov. Phys. JETP 66, 290298.Google Scholar
Schroeder, C. B., Benedetti, C., Esarey, E., van Tilborg, J. and Leemans, W. P. 2011 Group velocity and pulse lengthening of mismatched laser pulses in plasma channels. Phys. Plasmas 18, 083103.CrossRefGoogle Scholar
Spence, D. J. and Hooker, S. M. 2000 Investigation of a hydrogen plasma waveguide. Phys. Rev. E 63, 015401.CrossRefGoogle ScholarPubMed
Sprangle, P. and Esarey, E. 1992 Interaction of ultrahigh laser fields with beams and plasmas. Phys. Fluids B 4, 2241.CrossRefGoogle Scholar
Tajima, T. and Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Veysman, M., Andreev, N. E., Cassou, K., Ayoul, Y., Maynard, G. and Cros, B. 2010 Theoretical and experimental study of laser beam propagation in capillary tubes for non-symmetrical coupling conditions. J. Opt. Soc. Am. B 27, 1400-110.CrossRefGoogle Scholar
Veysman, M., Andreev, N. E., Maynard, G. and Cros, B. accepted Non-symmetric laser pulses propagation in capillaries with variable radius. Phys. Rev. E.Google Scholar
Wiggins, S. M., Issac, R. C., Welsh, G. H., Brunetti, E., Shanks, R. P., Anania, M. P., Cipiccia, S., Manahan, G. G., Aniculaesei, C., Ersfeld, B.et al. 2010 High quality electron beams from a laser wakefield accelerator. Plasma Phys. Control. Fusion 52, 124032 (8 pp).CrossRefGoogle Scholar
Wojda, F., Cassou, K., Genoud, G., Burza, M., Glinec, Y., Lundh, O., Persson, A., Vieux, G., Brunetti, E., Shanks, R. P.et al. 2009 Laser-driven plasma waves in capillary tubes. Phys. Rev. E 80, 066403.CrossRefGoogle ScholarPubMed
Zigler, A., Ehrlich, Y., Cohen, C., Krall, J. and Sprangle, P. 1996 Optical guiding of high-intensity laser pulses in a long plasma channel formed by a slow capillary discharge. J. Opt. Soc. Am. B 13, 6871.CrossRefGoogle Scholar