Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T06:50:06.407Z Has data issue: false hasContentIssue false

Laser plasma accelerator driven by a super-Gaussian pulse

Published online by Cambridge University Press:  12 April 2012

TOBIAS OSTERMAYR
Affiliation:
Ludwig-Maximilians-Universität München, 85748 Garching, Germany ([email protected])
STEFAN PETROVICS
Affiliation:
Ludwig-Maximilians-Universität München, 85748 Garching, Germany ([email protected])
KHALID IQBAL
Affiliation:
Ludwig-Maximilians-Universität München, 85748 Garching, Germany ([email protected])
CONSTANTIN KLIER
Affiliation:
Ludwig-Maximilians-Universität München, 85748 Garching, Germany ([email protected])
HARTMUT RUHL
Affiliation:
Ludwig-Maximilians-Universität München, 85748 Garching, Germany ([email protected])
KAZUHISA NAKAJIMA
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0081, Japan Shanghai Jiao Tong University, Shanghai 200240, China
AIHUA DENG
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
XIAOMEI ZHANG
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
BAIFEI SHEN
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
JIANSHENG LIU
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
RUXIN LI
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
ZHIZHAN XU
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
TOSHIKI TAJIMA
Affiliation:
Ludwig-Maximilians-Universität München, 85748 Garching, Germany ([email protected]) Max-Planck-Institut für Quantenoptik, Garching 85748, Germany

Abstract

A laser wakefield accelerator (LWFA) with a weak focusing force is considered to seek improved beam quality in LWFA. We employ super-Gaussian laser pulses to generate the wakefield and study the behavior of the electron beam dynamics and synchrotron radiation arising from the transverse betatron oscillations through analysis and computation. We note that the super-Gaussian wakefields radically reduce the betatron oscillations and make the electron orbits mainly ballistic over a single stage. This feature permits to obtain small emittance and thus high luminosity, while still benefitting from the low-density operation of LWFA (Nakajima et al. 2011 Phys. Rev. ST Accel. Beams14, 091301), such as the reduced radiation loss, less number of stages, less beam instabilities, and less required wall plug power than in higher density regimes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brozek-Pluskab, B., Gliger, D., Hallou, A., Malka, V. and Gauduel, Y. A. 2005 Radiat. Phys. Chem. 72, 149.CrossRefGoogle Scholar
Cheshkov, S., Tajima, T., Horton, W. and Yokoya, K. 2000 Phys. Rev. ST Accel. Beams 3, 071301.CrossRefGoogle Scholar
Chiu, C., Cheshkov, S. and Tajima, T. 2000 Phys. Rev. ST Accel. Beams 3, 101301.CrossRefGoogle Scholar
Clayton, C. E. et al. 2010 Phys. Rev. Lett. 105, 105003.Google Scholar
Cormier-Michel, E., Esarey, E., Geddes, C. G. R., Schroeder, C. B. and Leemans, W. P. 2009 Proceedings of ICAP '09 pp. 281–284.Google Scholar
Crowell, R., Gosztola, D. J., Shkrob, I. A., Oulianov, D. A., Jonah, C. D. and Rajh, T. 2004 Radiat. Phys. Chem. 70, 501.CrossRefGoogle Scholar
Edwards, D. A. and Edwards, H. T. 2008 Reviews of Accelerator Science and Technology, Vol. 1. Singapore: World Scientific.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. and Malka, V. 2004 Nature 431, 541.Google Scholar
Faure, J., Glinec, Y., Santos, J. J., Ewald, F, Rousseau, J.-P., Kiselev, S., Pukhov, A., Hosokai, T. and Malka, V. 2005 Phys. Rev. Lett. 95, 205003.Google Scholar
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. and Malka, V. 2006 Nature 444, 737.Google Scholar
Froula, D. H. et al. 2009 Phys. Rev. Lett. 103, 215006.Google Scholar
Geddes, C. G. R., Cormier-Michel, E., Esarey, E., Schroeder, C. B. and Mullowney, P. 2010 AIP Conf. Proc. 1299, 197.Google Scholar
Geddess, C. G. R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. and Leemans, W. P. 2004 Nature 431, 538.Google Scholar
Giulietti, A. et al. 2008 Phys. Rev. Lett. 101, 105002.Google Scholar
Gorbunov, L. M. and Kirsanov, V. I. 1987 Sov. Phys. JETP 66, 290.Google Scholar
Hafz, N. A. M. et al. 2008 Nature Photonics 2, 571.CrossRefGoogle Scholar
Hamster, H., Sullivan, A., Gordon, S., White, W. and Falcone, R. W. 1993 Phys. Rev. Lett. 71, 2725.CrossRefGoogle Scholar
Jackson, J. D. 1999 Classical Electrodynamics, 3rd edn.New York: Wiley.Google Scholar
Kameshima, T. et al. 2008 Appl. Phys. Express 1, 066001.CrossRefGoogle Scholar
Karsch, S. et al. 2007 New J. Phys. 9, 415.CrossRefGoogle Scholar
Kostyukov, I., Pukov, A. and Kiselev, S. 2004 Phys. Plasmas 11, 5256.Google Scholar
Lee, E. P. and Cooper, R. K. 1976 Part. Accel. 7, 83.Google Scholar
Leemans, W. P., Nagler, B., Gonsalves, A. J., Toth, C., Nakamura, K., Geddes, C. G. R., Esarey, E., Schroeder, C. B. and Hooker, S. M. 2006 Nature Phys. 2, 696.Google Scholar
Leemans, W. P. et al. 2003 Phys. Rev. Lett. 91, 074802.CrossRefGoogle Scholar
Liu, J. S. et al. 2011 Phys. Rev. Lett. 107, 035001.CrossRefGoogle Scholar
Lu, W., Huang, C., Zhou, M., Mori, W. B. and Katsouleas, T. 2006 Phys. Rev. Lett. 96, 165002.CrossRefGoogle Scholar
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. 2007 Phys. Rev. ST Accel. Beams 10, 061301.CrossRefGoogle Scholar
Lundh, O. et al. 2011 Nature Phys. 7, 219.CrossRefGoogle Scholar
Mangles, S. P. D. et al. 2004 Nature 431, 535.CrossRefGoogle Scholar
McGuffey, C. et al. 2010 Phys. Rev. Lett. 104, 025004.Google Scholar
Michel, P., Schroeder, C. B., Shadwick, B. A., Esarey, E. and Leemans, W. P. 2006 Phy. Rev. E 74, 026501.Google Scholar
Modena, A. et al. 1995 Nature 337, 606.Google Scholar
Nakajima, K. et al. 1995 Phys. Rev. Lett. 74, 4428.CrossRefGoogle Scholar
Nakajima, K. et al. 2011 Phys. Rev. ST Accel. Beams 14, 091301.Google Scholar
Osterhoff, J. et al. 2008 Phys. Rev. Lett. 101, 085002.CrossRefGoogle Scholar
Pak, A., Marsh, K. A., Martins, S. F., Lu, W., Mori, W. B. and Joshi, C. 2010 Phys. Rev. Lett. 104, 025003.CrossRefGoogle Scholar
Pollock, B. B. et al. 2011 Phys. Rev. Lett. 107, 045001.Google Scholar
Schmid, K., Buck, A., Sears, C. M. S., Mikhailova, J. M., Tautz, R., Herrmann, D., Geissler, M., Krausz, F. and Veisz, L. 2010 Phys. Rev. ST Accel. Beams 13, 091301.CrossRefGoogle Scholar
Schroeder, C. B., Benedetti, C., Esarey, E., van Tilborg, J. and Leemans, W. P. 2011 Phys. Plasmas 18, 083103.CrossRefGoogle Scholar
Schroeder, C. B., Esarey, E., Geddes, C. G. R., Benedetti, C. and Leemans, W. P. 2010 Phys. Rev. ST Accel. Beams 13, 101301.Google Scholar
Sprangle, P., Esarey, E., Ting, A., and Joyce, G. 1988 Appl. Phys. Lett. 53, 2146.Google Scholar
Swanekamp, S. B., Holloway, J. P., Kammash, T. and Gilgenbach, R. M. 1992 Phys. Fluids B 4, 1332.CrossRefGoogle Scholar
Tajima, T. 1985 Laser Part. Accel. 3, 351.CrossRefGoogle Scholar
Tajima, T. and Dawson, J. M. 1979 Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
van Outheusden, T., Pasmans, P. L. E. M., van der Geer, S. B., de Loos, M. J., van der Wiel, M. J. and Luiten, O. J. 2010 Phys. Rev. Lett. 105, 264801.CrossRefGoogle Scholar
Xie, M., Tajima, T., Yokoya, K. and Chattopadyay, S. 1997 AIP Proc. 398, 232.Google Scholar