Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T02:31:38.876Z Has data issue: false hasContentIssue false

Lane dynamics in pair-ion plasmas: effect of obstacle and geometric aspect ratio

Published online by Cambridge University Press:  05 November 2021

Swati Baruah*
Affiliation:
The Assam Kaziranga University, Jorhat-785 006, Assam, India
Vishal K. Prajapati
Affiliation:
The Assam Kaziranga University, Jorhat-785 006, Assam, India
R. Ganesh
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India
*
Email address for correspondence: [email protected]

Abstract

Lane formation dynamics of driven two-dimensional pair-ion plasmas is investigated in under-damped cases where the effect of particle inertia cannot be neglected. Extensive Langevin dynamics simulations using an OpenMP parallel program are carried out to analyse the effect of obstacle and geometric aspect ratio on lane formation dynamics previously reported in Sarma et al. (Phys. Plasmas, vol. 27, 2020, 012106) and Baruah et al. (J. Plasma Phys., vol. 87, 2021, 905870202). Lanes are found to form when like particles move along or opposite to the applied field direction. Lane order parameter, cumulative order parameter and distribution of the order parameter have been implemented to detect phase transition. The effect of geometric aspect ratio on the stability of lanes is systematically determined in both the presence and absence of an obstacle. Here, a specular reflective boundary condition is implemented to mimic an obstacle. We demonstrate that an obstacle promotes the merging of lanes, and the system gradually transitions to a partially mixed phase with higher value of aspect ratio. The occurrence of lane mixing phenomena at the separation boundary of two oppositely flowing lanes at higher value of aspect ratio is observed. In the presence of an oscillatory electric field, the lane merging tendency is reduced to a large extent as compared to the system where a constant electric field is applied. Furthermore, in the presence of both space- and time-varying electric fields, an appearance of a void is observed on either side of the obstacle. The study finds that the presence of an external magnetic field promotes acceleration of the phase transition process towards the lane mixing phase; it also reveals the existence of electric field drift in the system. Our findings may prove to be useful in understanding the nature of lane dynamics in naturally occurring pair-ion plasma systems as well as their relevance to technological applications that exploit or mitigate self-organization.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdelsalam, U. 2010 Dust-ion-acoustic solitary waves in a dense pair-ion plasma. Physica B 405 (18), 39143918.CrossRefGoogle Scholar
Arshad, K. & Mahmood, S. 2010 Electrostatic ion waves in non-maxwellian pair-ion plasmas. Phys. Plasmas 17 (12), 124501.CrossRefGoogle Scholar
Baruah, S., Ganesh, R. & Avinash, K. 2015 A molecular dynamics study of phase transition in strongly coupled pair-ion plasmas. Phys. Plasmas 22 (8), 082116.CrossRefGoogle Scholar
Baruah, S., Sarma, U. & Ganesh, R. 2021 Effect of external magnetic field on lane formation in driven pair-ion plasmas. J. Plasma Phys. 87 (2), 905870202.CrossRefGoogle Scholar
Chen, F. F. 2016 Introduction to Plasma Physics and Controlled Fusion, 3rd edn. Springer.CrossRefGoogle Scholar
Dwivedi, C. 2000 Dynamo transformation of the collisional R-T in a weakly ionized plasma. Pramana J. Phys. 55 (5–6), 849854.CrossRefGoogle Scholar
Feliciani, C., Murakami, H. & Nishinari, K. 2018 A universal function for capacity of bidirectional pedestrian streams: filling the gaps in the literature. PLoS ONE 13, e0208496.CrossRefGoogle ScholarPubMed
Ikeda, K. & Kim, K. 2017 Lane formation dynamics of oppositely self-driven binary particles: effects of density and finite system size. J. Phys. Soc. Japan 86 (4), 044004.CrossRefGoogle Scholar
Kim, S.-H., Heinrich, J. & Merlino, R. 2008 Electrostatic ion-cyclotron waves in a plasma with heavy negative ions. Planet. Space Sci. 56 (11), 15521559.CrossRefGoogle Scholar
Kim, S.-H. & Merlino, R. L. 2007 Electron attachment to $\mathrm {c}_7\mathrm {f}_14$ and $\mathrm {sf}_6$ in a thermally ionized potassium plasma. Phys. Rev. E 76, 035401.CrossRefGoogle Scholar
Kim, S. H., Merlino, R. L., Meyer, J. K., Rosenberg, M. 2013 Low-frequency electrostatic waves in a magnetized, current-free, heavy negative ion plasma. J. Plasma Phys. 79 (6), 11071111.CrossRefGoogle Scholar
Kogler, F. & Klapp, S. 2015 Lane formation in a system of dipolar microswimmers. Europhys. Lett. 110.CrossRefGoogle Scholar
Mahajan, S. M. & Shatashvili, N. L. 2008 Wave localization and density bunching in pair ion plasmas. Phys. Plasmas 15 (10), 100701.CrossRefGoogle Scholar
Netz, R. R. 2003 Conduction and diffusion in two-dimensional electrolytes. Europhys. Lett. 63 (4), 616622.CrossRefGoogle Scholar
Oohara, W., Date, D. & Hatakeyama, R. 2005 Electrostatic waves in a paired fullerene-ion plasma. Phys. Rev. Lett. 95, 175003.CrossRefGoogle Scholar
Oohara, W., Fujii, M., Watai, M., Hiraoka, Y., Egawa, M., Morinaga, Y., Takamori, S. & Yoshida, M. 2019 Generation of hydrogen ionic plasma superimposed with positive ion beam. AIP Adv. 9 (8), 085303.CrossRefGoogle Scholar
Oohara, W. & Hatakeyama, R. 2003 Pair-ion plasma generation and fullerene-dimer formation. Thin Solid Films 435, 280284.CrossRefGoogle Scholar
Oohara, W. & Hatakeyama, R. 2007 Basic studies of the generation and collective motion of pair-ion plasmas. Phys. Plasmas 14 (5), 055704.CrossRefGoogle Scholar
Piran, T. 2005 The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 11431210.CrossRefGoogle Scholar
Saleem, H. 2006 Kinetic theory of acoustic wave in pair-ion plasmas. Phys. Plasmas 13 (4), 044502.CrossRefGoogle Scholar
Saleem, H. 2007 A criterion for pure pair-ion plasmas and the role of quasineutrality in nonlinear dynamics. Phys. Plasmas 14 (1), 014505.CrossRefGoogle Scholar
Saleem, H., Vranjes, J. & Poedts, S. 2006 On some properties of linear and nonlinear waves in pair-ion plasmas. Phys. Lett. A 350 (5), 375379.CrossRefGoogle Scholar
Sarma, U., Baruah, S. & Ganesh, R. 2020 Lane formation in driven pair-ion plasmas. Phys. Plasmas 27 (1), 012106.CrossRefGoogle Scholar
Schmittmann, B. & Zia, R. 1998 Driven diffusive systems. An introduction and recent developments. Phys. Rep. 301 (1), 4564.CrossRefGoogle Scholar
Shukla, P. K. & Stenflo, L. 2005 Periodic structures on an ionic-plasma-vacuum interface. Phys. Plasmas 12 (4), 044503.CrossRefGoogle Scholar
Tarama, S., Egelhaaf, S. U. & Löwen, H. 2019 Traveling band formation in feedback-driven colloids. Phys. Rev. E 100, 022609.CrossRefGoogle ScholarPubMed
Tribeche, M., Gougam, L. A., Boubakour, N. & Zerguini, T. H. 2007 Electrostatic solitary structures in a charge-varying pair–ion–dust plasma. J. Plasma Phys. 73 (3), 403415.CrossRefGoogle Scholar
Verheest, F. 2006 Existence of bulk acoustic modes in pair plasmas. Phys. Plasmas 13 (8), 082301.CrossRefGoogle Scholar
Vissers, T., van Blaaderen, A. & Imhof, A. 2011 a Band formation in mixtures of oppositely charged colloids driven by an ac electric field. Phys. Rev. Lett. 106, 228303.CrossRefGoogle ScholarPubMed
Vissers, T., Wysocki, A., Rex, M., Löwen, H., Royall, C. P., Imhof, A. & van Blaaderen, A. 2011b Lane formation in driven mixtures of oppositely charged colloids. Soft Matt. 7, 23522356.CrossRefGoogle Scholar
Vladimirov, S., Ostrikov, K., Yu, M. & Morfill, G. 2003 Ion-acoustic waves in a complex plasma with negative ions. Phys. Rev. E 67, 036406.CrossRefGoogle Scholar
Vranjes, J. & Poedts, S. 2005 On waves and instabilities in pair-ion plasma. Plasma Sources Sci. Technol. 14 (3), 485491.CrossRefGoogle Scholar