Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T10:44:59.806Z Has data issue: false hasContentIssue false

Landau fluid closures with nonlinear large-scale finite Larmor radius corrections for collisionless plasmas

Published online by Cambridge University Press:  05 September 2014

P. L. Sulem*
Affiliation:
Laboratoire J.L. Lagrange, Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Boulevard de l'Observatoire, CS 34229, 06304 Nice Cedex 4, France
T. Passot
Affiliation:
Laboratoire J.L. Lagrange, Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Boulevard de l'Observatoire, CS 34229, 06304 Nice Cedex 4, France
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With the aim to develop a tool for simulating turbulence in collisionless magnetized plasmas, fluid models retaining low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections are discussed. It turns out that, in the absence of ion-cyclotron resonance, the dispersion and damping of kinetic Alfvén waves at scales as small as a fraction of the ion Larmor radius are accurately reproduced when using fluid estimates of the non-gyrotropic moments, at leading-order within a large-scale asymptotics. Differently, evaluations based on the low-frequency linear kinetic theory are necessary in regimes of large temperature anisotropies, and in particular in the presence of the mirror instability. Combining both descriptions leads to a new Landau fluid model retaining large-scale FLR nonlinearities, while reproducing the linear dynamics of low-frequency modes at the sub-ionic scales.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

References

REFERENCES

Alexandrova, O., Lacombe, C. and Mangeney, A. 2008 Spectra and anisotropy of magnetic fluctuations in the earths magnetosheath: Cluster observations. Ann. Geophys. 26, 35853596.Google Scholar
Borgogno, D., Passot, T. and Sulem, P. L. 2007 Magnetic holes in plasmas close to mirror instability. Nonlinear Proc. Geophys. 14, 373383.Google Scholar
Cerri, S. S., Henri, P., Califano, F., Del Sarto, D., Faganello, M. and Pegoraro, F. 2013 Extended fluid models: Pressure tensor effects and equilibria. Phys. Plasmas 20, 112112.Google Scholar
Goswami, P., Passot, T. and Sulem, P. L. 2005 A Landau fluid model for warm collisionless plasmas. Phys. Plasmas 12, 102109.Google Scholar
Hedrick, C. L. and Leboeuf, J. N. 1992 Landau fluid equations for electromagnetic and electrostatic fluctuations. Phys. Fluids B4, 39153934.CrossRefGoogle Scholar
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. and Schekochihin, A. A. 2006 Astrophysical gyrokinetics: Basic equations and linear theory. Astrophys. J. 651, 590614.Google Scholar
Hunana, P., Goldstein, M. L., Passot, T., Sulem, P. L., Laveder, D. and Zank, G. P. 2013a Polarization and compressibility of oblique kinetic Alfvén waves. Astrophys. J. 766, 93.CrossRefGoogle Scholar
Hunana, P., Goldstein, M. L., Passot, T., Sulem, P. L., Laveder, D. and Zank, G. P. 2013b Properties of kinetic Alfvén waves: A comparison of fluid models with kinetic theory. In: SOLAR WIND 13: Proc. 13th Int. Solar Wind Conference, AIP Conf. Proc., Vol. 1539, pp. 179–182.Google Scholar
Laveder, D., Marradi, L., Passot, T. and Sulem, P. L. 2011 Fluid simulations of mirror constraints on proton temperature anisotropy in solar wind turbulence. Geophys. Res. Lett. 38, L17108.Google Scholar
Laveder, D., Passot, T. and Sulem, P. L. 2013 Fluid simulations of non-resonant anisotropic ion heating. Ann. Geophys. 31, 11951204.Google Scholar
Macmahon, A. 1965 Finite gyro-radius corrections to the hydromagnetic equations for a Vlasov plasma. Phys. Fluids 8, 18401845.Google Scholar
Matteini, L., Hellinger, P., Landi, S., Trávníček, P. M. and Velli, M. 2012 Ion kinetics in the solar wind: Coupling global expansion to local microphysics. Space Sci. Rev. 172, 373396.CrossRefGoogle Scholar
Passot, T., Henri, P., Laveder, D. and Sulem, P. L. 2014 A fluid approach for ion scale plasmas with weakly distorted magnetic fields. Eur. Phys. J. D. 68, 207.Google Scholar
Passot, T. and Sulem, P. L. 2007 Collisionless magnetohydrodynamics with gyrokinetic effects. Phys. Plasmas 14, 082502.Google Scholar
Passot, T., Sulem, P. L. and Hunana, P. 2012 Extending magnetohydrodynamics to the slow dynamics of collisionless plasmas. Phys. Plasmas 19, 082113.Google Scholar
Ramos, J. J. 2005 Fluid formalism for collisionless magnetized plasmas. Phys. Plasmas 12, 052102.Google Scholar
Rönnmark, K. 1982 Waves in homogeneous, anisotropic multicomponent plasmas (WHAMP). Tech. Rep. 179. Kiruna Geophysical Institute.Google Scholar
Sahraoui, F., Goldstein, M. L., Belmont, G., Canu, P. and Rezeau, L. 2010 Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101.Google Scholar
Sahraoui, F., Goldstein, M. L., Robert, P. and Khotyaintsev, Y. U. 2009 Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102.Google Scholar
Schekochihin, A. A., Cowley, S. C., Rincon, F. and Rosin, M. S. 2010 Magnetofuid dynamics of magnetized cosmic plasma: Firehose and gyrothermal instabilities. Mon. Not. R. Astron. Soc. 405, 291300.Google Scholar
Sharma, P., Hammett, G. W., Quataert, E. and Stone, J. M. 2006 Shearing box simulation of the MRI in a collisionless plasma. Astrophys. J. 637, 952967.Google Scholar
Snyder, P. B., Hammett, G. W. and Dorland, W. 1997 Landau fluid models of collisionless magnetohydrodynamics. Phys. Plasmas 4, 39743985.Google Scholar