Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T22:48:42.502Z Has data issue: false hasContentIssue false

Kinetic modulational instability of broadband dispersive Alfvén waves in plasmas

Published online by Cambridge University Press:  01 April 2007

P.K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected], [email protected]) Max-Planck Institut für extraterrestrische Physik, D-45741 Garching, Germany CCLRC Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OQX, UK SUPA Department of Physics, University of Strathclyde, Glasgow G4 ONG, UK GoLP/Centro de Fíi sica de Plasmas, Instituto Superior Técnico, 1096 Lisboa Codex, Portugal
NITIN SHUKLA
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected], [email protected]) Department of Physics, K. N. Government Postgraduate College, Gyanpur, Bhadohi 221304, U.P., India
L. STENFLO
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected], [email protected]) Department of Physics, Umeå University, SE-90187 Umeå, Sweden ([email protected])
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a kinetic modulational instability of broadband (random phase) magnetic-field-aligned circularly polarized dispersive Alfvén waves in plasmas. By treating random phase Alfvén waves as quasi-particles, we consider their nonlinear interactions with ion quasi-modes within the framework of the wave-kinetic and Vlasov descriptions. A nonlinear dispersion relation governing such interactions is derived and analyzed. An explicit expression for the kinetic modulational instability growth rate is presented. Our results can be of relevance to the nonlinear propagation of incoherent Alfvén waves, which have been frequently observed in interstellar media, in the solar corona and in the solar wind, as well as in the foreshock regions of planetary bow-shocks and laboratory plasmas.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2006

References

[1]Yu, M. Y. and Shukla, P. K. 1978 Phys. Fluids 21, 1454.CrossRefGoogle Scholar
Sharma, R. P. and Shukla, P. K. 1983 Phys. Fluids 26, 87.CrossRefGoogle Scholar
[2]Shukla, P. K. and Stenflo, L. 1995 Phys. Scripta T60, 32.CrossRefGoogle Scholar
[3]Shukla, P. K. and Stenflo, L. 1999 Nonlinear MHD waves and Turbulence (ed. Passot, T. and Sulem, P. L.). Berlin: Springer, pp. 130.Google Scholar
[4]Sundqvist, D., Krasnoselskikh, V., Shukla, P. K., Vaivads, A., André, M., Buchert, S. and Rème, H. 2005 Nature 436, 825828.CrossRefGoogle Scholar
[5]Shevchenko, V. I., Galinsky, V. L., Ride, S. K. and Baine, M. 1995 Geophys. Res. Lett. 22, 2997.CrossRefGoogle Scholar
Shevchenko, V., Galinsky, V., Sagdeev, R. and Winske, D. 2004 Phys. Plasmas 11, 4290.CrossRefGoogle Scholar
[6]Medvedev, M. V., Diamond, P. H., Shevchenko, V. I. and Galinsky, V. L. 1997 Phys. Rev. Lett. 78, 4934.CrossRefGoogle Scholar
[7]Yan, H. and Lazarian, A. 2002 Phys. Rev. Lett. 89, 281102.CrossRefGoogle Scholar
Diamond, P. H. and Malkov, M. A. 2004 J. Plasma Fusion Res. Ser. 6, 28.Google Scholar
[8]Gekelman, W. 1999 J. Geophys. Res. 104, 14417.CrossRefGoogle Scholar
[9]Hasegawa, A. and Uberoi, C. 1982 The Alfvén Wave. Report DOE/TIC No. 11197, National Technical Information Service, US Department of Commerce, Springfield.Google Scholar
[10]Cramer, N. F. 2001 The Physics of Alfvén Waves. Berlin: Wiley-VCH.CrossRefGoogle Scholar
[11]Shukla, P. K., Bingham, R., McKenzie, J. F. and Axford, I. 1999 Solar Phys. 186, 61.CrossRefGoogle Scholar
Wu, D. J. and Fang, C. 1999 Astrophys. J. 511, 958.CrossRefGoogle Scholar
[12]Shukla, P. K., Bingham, R., Eliasson, B., Dieckmann, M. E. and Stenflo, L. 2006 Plasma Phys. Control. Fusion 48, B249.CrossRefGoogle Scholar
[13]Sagdeev, R. Z. and Galeev, A. A. 1969 Nonlinear Plasma Theory. New York: W. A. Benjamin.Google Scholar
[14]Hasegawa, A. and Chen, L. 1976 Phys. Rev. Lett. 36, 1362.CrossRefGoogle Scholar
[15]Shukla, P. K. and Dawson, J. M. 1984 Astrophys. J. 276, L49.CrossRefGoogle Scholar
[16]Brodin, G. and Stenflo, L. 1988 J. Plasma Phys. 39, 277; 1990 Contrib. Plasma Phys. 30, 413.CrossRefGoogle Scholar
[17]Rogister, A. 1971 Phys. Fluids 14, 2733.CrossRefGoogle Scholar
[18]Shukla, P. K. and Stenflo, L. 1985 Phys. Fluids 28, 1576.CrossRefGoogle Scholar
Shukla, P. K., Stenflo, L., Bingham, R. and Eliasson, B. 2004 Plasma Phys. Control. Fusion 46, B349.CrossRefGoogle Scholar
[19]Hollweg, J. V. 1994 J. Geophys. Res. 99, 23431.CrossRefGoogle Scholar
[20]Nariyuki, Y. and Hada, T. 2006 Nonlin. Proc. Geophys. 13, 425.CrossRefGoogle Scholar
[21]Nariyuki, N. and Hada, T. 2006 Preprint no: arXiv:physics/0608306 v1.Google Scholar
[22]Carter, T. A., Brugman, B., Pribyl, P. and Lybarger, W. 2006 Phys. Rev. Lett. 96, 155001.CrossRefGoogle Scholar
[23]Kadomtsev, B. B. 1965 Plasma Turbulence. New York: Academic.Google Scholar
[24]Shukla, P. K., Stenflo, L. and Faria, R. T. 1998 Phys. Plasmas 5, 2846.CrossRefGoogle Scholar
[25]Ichimaru, S. 1973 Basic Principles of Plasma Physics: A Statistical Approach. London: W. A. Benjamin Inc., pp. 5658.Google Scholar