Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T07:15:03.988Z Has data issue: false hasContentIssue false

Kinetic inhibition of magnetohydrodynamics shocks in the vicinity of a parallel magnetic field

Published online by Cambridge University Press:  06 April 2017

Antoine Bret*
Affiliation:
ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real, Spain Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MA 02138, USA
Asaf Pe’er
Affiliation:
Physics Department, University College Cork, Cork, Ireland
Lorenzo Sironi
Affiliation:
Department of Astronomy, Columbia University, New York, NY 10027, USA
Aleksander Sa̧dowski
Affiliation:
MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Ave, Cambridge, MA 02139, USA Einstein Fellow
Ramesh Narayan
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MA 02138, USA
*
Email address for correspondence: [email protected]

Abstract

According to magnetohydrodynamics (MHD), the encounter of two collisional magnetized plasmas at high velocity gives rise to shock waves. Investigations conducted so far have found that the same conclusion still holds in the case of collisionless plasmas. For the case of a flow-aligned field, MHD stipulates that the field and the fluid are disconnected, so that the shock produced is independent of the field. We present a violation of this MHD prediction when considering the encounter of two cold pair plasmas along a flow-aligned magnetic field. As the guiding magnetic field grows, isotropization is progressively suppressed, resulting in a strong influence of the field on the resulting structure. A micro-physics analysis allows us to understand the mechanisms at work. Particle-in-cell simulations also support our conclusions and show that the results are not restricted to a strictly parallel field.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, H., Dieckmann, M. E., Romagnani, L., Doria, D., Sarri, G., Cerchez, M., Ianni, E., Kourakis, I., Giesecke, A. L., Notley, M. et al. 2013 Time-resolved characterization of the formation of a collisionless shock. Phys. Rev. Lett. 110, 205001.Google Scholar
Bale, S. D., Mozer, F. S. & Horbury, T. S. 2003 Density-transition scale at quasiperpendicular collisionless shocks. Phys. Rev. Lett. 91, 265004.Google Scholar
Bell, A. R. 2004 Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550558.Google Scholar
Blandford, R. & Eichler, D. 1987 Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1.Google Scholar
Bret, A. 2015a Collisional behaviors of astrophysical collisionless plasmas. J. Plasma Phys. 81, 455810202.Google Scholar
Bret, A. 2015b Particles trajectories in magnetic filaments. Phys. Plasmas 22, 072116.CrossRefGoogle Scholar
Bret, A. 2016a Hierarchy of instabilities for two counter-streaming magnetized pair beams. Phys. Plasmas 23, 062122.Google Scholar
Bret, A. 2016b Particles trajectories in Weibel magnetic filaments with a flow-aligned magnetic field. J. Plasma Phys. 82, 905820403.Google Scholar
Bret, A., Gremillet, L. & Dieckmann, M. E. 2010 Multidimensional electron beam-plasma instabilities in the relativistic regime. Phys. Plasmas 17, 120501.Google Scholar
Bret, A., Stockem, A., Fiúza, F., Ruyer, C., Gremillet, L., Narayan, R. & Silva, L. O. 2013 Collisionless shock formation, spontaneous electromagnetic fluctuations, and streaming instabilities. Phys. Plasmas 20, 042102.CrossRefGoogle Scholar
Bret, A., Stockem, A., Narayan, R. & Silva, L. O. 2014 Collisionless Weibel shocks: Full formation mechanism and timing. Phys. Plasmas 21 (7), 072301.Google Scholar
Buneman, O. 1993 Tristan: the 3-d electromagnetic particle code. In Computer Space Plasma Physics (ed. Matsumoto, H. & Omura, Y.), p. 67. Terra Scientific.Google Scholar
Caprioli, D. & Spitkovsky, A. 2014 Simulations of ion acceleration at non-relativistic shocks. i. Acceleration efficiency. Astrophys. J. 783, 91.CrossRefGoogle Scholar
Davidson, R. C., Hammer, D. A., Haber, I. & Wagner, C. E. 1972 Nonlinear development of electromagnetic instabilities in anisotropic plasmas. Phys. Fluids 15, 317.Google Scholar
Deutsch, C., Bret, A., Firpo, M.-C. & Fromy, P. 2005 Interplay of collisions with quasilinear growth rates of relativistic electron-beam-driven instabilities in a superdense plasma. Phys. Rev. E 72, 026402.Google Scholar
Falcke, H. & Rezzolla, L. 2014 Fast radio bursts: the last sign of supramassive neutron stars. Astron. Astrophys. 562, A137.Google Scholar
Gerbig, D. & Schlickeiser, R. 2011 Jump conditions for relativistic magnetohydrodynamic shocks in a gyrotropic plasma. Astrophys. J. 733 (1), 32.Google Scholar
Gurnett, D. A. & Bhattacharjee, A. 2005 Introduction to Plasma Physics: With Space and Laboratory Applications. Cambridge University Press.Google Scholar
Hill, J. M., Key, M. H., Hatchett, S. P. & Freeman, R. R. 2005 Beam-Weibel filamentation instability in near-term and fast-ignition experiments. Phys. Plasmas 12, 082304.Google Scholar
Huntington, C. M., Fiúza, F., Ross, J. S., Zylstra, A. B., Drake, R. P., Froula, D. H., Gregori, G., Kugland, N. L., Kuranz, C. C., Levy, M. C. et al. 2015 Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. Nat. Phys. 11, 173.Google Scholar
Karimabadi, H., Krauss-Varban, D. & Omidi, N. 1995 Temperature anisotropy effects and the generation of anomalous slow shocks. Geophys. Res. Lett. 22 (20), 26892692.Google Scholar
Keppens, R. & Meliani, Z. 2008 Linear wave propagation in relativistic magnetohydrodynamics. Phys. Plasmas 15 (10), 102103.Google Scholar
Kirk, J. G. & Duffy, P. 1999 Particle acceleration and relativistic shocks. J. Phys. G: Nucl. Part. Phys. 25 (8), R163.Google Scholar
Kulsrud, R. M. 2005 Plasma Physics for Astrophysics. Princeton University Press.CrossRefGoogle Scholar
Lobet, M., Ruyer, C., Debayle, A., d’Humières, E., Grech, M., Lemoine, M. & Gremillet, L. 2015 Ultrafast synchrotron-enhanced thermalization of laser-driven colliding pair plasmas. Phys. Rev. Lett. 115, 215003.Google Scholar
Lyubarsky, Y. 2014 A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 442, L9L13.Google Scholar
Majorana, A. & Anile, A. M. 1987 Magnetoacoustic shock waves in a relativistic gas. Phys. Fluids 30, 30453049.Google Scholar
Marcowith, A., Bret, A., Bykov, A., Dieckman, M. E., Drury, L., Lembège, B., Lemoine, M., Morlino, G., Murphy, G., Pelletier, G. et al. 2016 The microphysics of collisionless shock waves. Rep. Prog. Phys. 79, 046901.Google Scholar
Martins, S. F., Fonseca, R. A., Silva, L. O. & Mori, W. B. 2009 Ion dynamics and acceleration in relativistic shocks. Astrophys. J. Lett. 695, L189L193.Google Scholar
Mészáros, P. & Rees, M. J.2014 Gamma-Ray Bursts, Preprint, arXiv:1401.3012.Google Scholar
Park, H.-S., Ross, J. S., Huntington, C. M., Fiuza, F., Ryutov, D., Casey, D., Drake, R. P., Fiksel, G., Froula, D., Gregori, G. et al. 2016 Laboratory astrophysical collisionless shock experiments on Omega and NIF. J. Phys.: Conf. Ser. 688 (1), 012084.Google Scholar
Pe’er, A. 2015 Physics of gamma-ray bursts prompt emission. Adv. Astron. 2015, 907321.Google Scholar
Petschek, H. E. 1958 Aerodynamic dissipation. Rev. Mod. Phys. 30, 966974.Google Scholar
Sagdeev, R. Z. & Kennel, C. F. 1991 Collisionless shock waves. Sci. Am. 264 (4), 106.Google Scholar
Sagdeev, R. Z. 1966 Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 4, 23.Google Scholar
Sa̧dowski, A., Narayan, R., McKinney, J. C. & Tchekhovskoy, A. 2014 Numerical simulations of super-critical black hole accretion flows in general relativity. Mon. Not. R. Astron. Soc. 439, 503520.Google Scholar
Schwartz, S. J., Henley, E., Mitchell, J. & Krasnoselskikh, V. 2011 Electron temperature gradient scale at collisionless shocks. Phys. Rev. Lett. 107, 215002.Google Scholar
Service, A. T. 1986 Fitting formulae for the equation of state of a perfect, semirelativistic Boltzmann gas. Astrophys. J. 307, 60.Google Scholar
Silva, L. O., Fonseca, R. A., Tonge, J. W., Mori, W. B. & Dawson, J. M. 2002 On the role of the purely transverse Weibel instability in fast ignitor scenarios. Phys. Plasmas 9, 2458.Google Scholar
Sironi, L., Keshet, U. & Lemoine, M. 2015 Relativistic shocks: particle acceleration and magnetization. Space Sci. Rev. 191, 519544.CrossRefGoogle Scholar
Sironi, L. & Spitkovsky, A. 2009 Particle acceleration in relativistic magnetized collisionless pair shocks: dependence of shock acceleration on magnetic obliquity. Astrophys. J, 698, 15231549.Google Scholar
Sironi, L. & Spitkovsky, A. 2011 Particle acceleration in relativistic magnetized collisionless electron–ion shocks. Astrophys. J. 726, 75– $+$ .Google Scholar
Sironi, L., Spitkovsky, A. & Arons, J. 2013 The maximum energy of accelerated particles in relativistic collisionless shocks. Astrophys. J. 771, 54.Google Scholar
Spitkovsky, A. 2005 Simulations of relativistic collisionless shocks: shock structure and particle acceleration. In Astrophysical Sources of High Energy Particles and Radiation (ed. Bulik, T., Rudak, B. & Madejski, G.), American Institute of Physics Conference Series, vol. 801, pp. 345350. American Institute of Physics.Google Scholar
Spitkovsky, A. 2008a On the structure of relativistic collisionless shocks in electron–ion plasmas. Astrophys. J. Lett. 673, L39L42.Google Scholar
Spitkovsky, A. 2008b Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys. J. Lett. 682, L5L8.CrossRefGoogle Scholar
Stockem, A., Fiuza, F., Bret, A., Fonseca, R. & Silva, L. O. 2014 Exploring the nature of collisionless shocks under laboratory conditions. Sci. Rep. 4, 3934.Google Scholar
Stockem, A., Fiúza, F., Fonseca, R. A. & Silva, L. O. 2012 The impact of kinetic effects on the properties of relativistic electron–positron shocks. Plasma Phys. Control. Fusion 54, 125004.CrossRefGoogle Scholar
Stockem, A., Lerche, I. & Schlickeiser, R. 2006 On the physical realization of two-dimensional turbulence fields in magnetized interplanetary plasmas. Astrophys. J. 651 (1), 584.Google Scholar
Stockem Novo, A., Bret, A., Fonseca, R. A. & Silva, L. O. 2015 Shock formation in electron–ion plasmas: mechanism and timing. Astrophys. J. Lett. 803, L29.Google Scholar
Vogl, D. F., Biernat, H. K., Erkaev, N. V., Farrugia, C. J. & Mühlbachler, S. 2001 Jump conditions for pressure anisotropy and comparison with the earth’s bow shock. Nonlinear Process. Geophys. 8 (3), 167174.Google Scholar
Zel’dovich, I. A. B. & Raizer, Y. P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover.Google Scholar