Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T14:15:24.780Z Has data issue: false hasContentIssue false

Kinetic description of linear theta-pinch equilibria

Published online by Cambridge University Press:  13 March 2009

D. B. Batchelor
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742
R. C. Davidson
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742

Abstract

Equilibrium properties of linear theta-pinch plasmas are studied within the framework of the steady-state (∂ / ∂ t = 0) Vlasov– Maxwell equations. The analysis is carried out for an infinitely long plasma column aligned parallel to an externally applied axial magnetic field Bzext ê 2. Equilibrium properties are calculated for the class of rigid-rotor Vlasov equilibria, in which the jth component distribution function f j(H⊥, Pθ, υ 2) depends on perpendicular energy H⊥ and canonical angular momentum Pθ, exclusively through the linear combination H⊥ – ω jPθ, where ω j = const. = angular velocity of mean rotation. General equilibrium relations that pertain to the entire class of rigid-rotor Vlasov equilibria are discussed; and specific examples of sharp- and diffuse-boundary equilibrium configurations are considered. Rigid-rotor density and magnetic field profiles are compared with experimentally observed profiles. A general prescription is given for determining the functional dependence of the equilibrium distribution function on H−ωjPθg in circumstances, where the density profile or magnetic field profile is specified.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bodin, H. A. & Newton, A. A. 1963 Phys. Fluids, 6, 1338.CrossRefGoogle Scholar
De Silva, A. W. & Kunze, H. J. 1968 J. Appl. Phys. 38, 2458.CrossRefGoogle Scholar
Davidson, R. C. 1974 Theory of Non-neutral Plasmas. Benjamin.Google Scholar
Davidson, R. C., Drobot, A. T. & Kapetanakos, C. A. 1973 Phys. Fluids, 16, 2199.CrossRefGoogle Scholar
Davidson, R. C. & Krall, N. A. 1970 Phys. Fluids, 16, 2199.CrossRefGoogle Scholar
Davidson, R. C. & Lawson, J. D. 1972 Particle Accelerators, 4, 1.Google Scholar
Freidberg, J. P. 1972 Phys. Fluids, 15, 1102.CrossRefGoogle Scholar
Freidberg, J. P. & Morse, R. L. 1969 Phys. Fluids, 12, 887.CrossRefGoogle Scholar
Griem, H. R., Kolb, A. C., Lipton, W. H. & Phillips, D. T. 1962 Nucl. Fusion Suppl. 2, 543.Google Scholar
Hammer, D. A. & Rostoker, N. 1970 Phys. Fluids, 13, 1831.CrossRefGoogle Scholar
Little, E. M., Quinn, W. E., Ribe, F. L. & Sawyer, G. A. 1962 Nucl. Fusion Suppl. 2, 97.Google Scholar
Morse, R. L. & Freidberg, J. P. 1970 Phys. Fluids, 13, 531.Google Scholar