Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T19:50:06.045Z Has data issue: false hasContentIssue false

Ion-acoustic waves in a degenerate multicomponent magnetoplasma

Published online by Cambridge University Press:  04 September 2012

U. M. ABDELSALAM
Affiliation:
Department of Mathematics, Faculty of Science, Fayoum University, Egypt ([email protected])
M. M. SELIM
Affiliation:
Theoretical Physics Research Group, Physics Department, Faculty of Science (Damietta), Mansoura University, Egypt

Abstract

The hydrodynamic equations of positive and negative ions, degenerate electrons, and the Poisson equation are used along with the reductive perturbation method to derive the three-dimensional Zakharov–Kuznetsov (ZK) equation. The G′/G-expansion method is used to obtain a new class of solutions for the ZK equation. At certain condition, these solutions can describe the solitary waves that propagate in our plasma. The effects of negative ion concentrations, the positive/negative ion cyclotron frequency, as well as positive-to-negative ion mass ratio on solitary pulses are examined. Finally, the present study might be helpful to understand the propagation of nonlinear ion-acoustic solitary waves in a dense plasma, such as in astrophysical objects.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelsalam, U. M. 2010 Physica B 405, 3914.CrossRefGoogle Scholar
Abdelsalam, U. M., Moslem, W. M. and Shukla, P. K. 2008a Phys. Plasmas 15, 052303; Abdelsalam, U. M., Moslem, W. M., Ali, S. and Shukla, P. K. 2008b Phys. Lett. A 33, 4923.CrossRefGoogle Scholar
Ali, S., Moslem, W. M., Shukla, P. K. and Kourakis, I. 2007 Phys. Lett. A 366, 606.CrossRefGoogle Scholar
Bascal, M. and Hamilton, G. W. 1979 Phys. Rev. Lett. 42, 1538.CrossRefGoogle Scholar
Becker, K., Koutsospyros, A., Yin, S.-M., Christodoulatos, C., Abramzon, N., Joaquin, J. C. and Brelles-Mariño, M. 2005 Plasma Phys. Contro. Fussion 47, B513.CrossRefGoogle Scholar
Bekir, A. 2008 Phys. Lett. A 372, 3400.CrossRefGoogle Scholar
Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., Waite, J. H. Jr., and Sittler, E. C. Jr., 2007 Geophys. Res. Lett. 34, L22103.Google Scholar
Chaizy, P. H., Reme, H., Sauvaud, J. A., d'Uston, C., Lin, R. P., Larson, D. E., Mitchell, D. L., Andersen, K. A., Carlson, C. W., Korth, A. and Mendis, D. A. 1991 Nature (London) 349, 393.CrossRefGoogle Scholar
Dubinov, A. E. and Dubinova, A. A. 2007 Plasma Phys. Rep. 33, 859.CrossRefGoogle Scholar
Feng, J. 2010 J. Appl. Math. Inform. 28, 1431.Google Scholar
Gottscho, R. A. and Gaebe, C. E. 1986 IEEE Trans. Plasma Sci. 14, 92.CrossRefGoogle Scholar
Haas, F., Garcia, L. G. and Goedert, J. 2003 Phys. Plasmas 10, 3858.CrossRefGoogle Scholar
Ichiki, R., Yoshimura, S., Watanabe, T., Nakamura, Y., and Kawai, Y. 2002 Phys. Plasmas 9, 4481.CrossRefGoogle Scholar
Jacquinot, J., McVey, B. D. and Scharer, J. E. 1977 Phys. Rev. Lett. 39, 88; Nakamura, Y., Odagiri, T. and Tsukabayashi, I. 1997 Plasma Phys. Control. Fusion 39, 115004.CrossRefGoogle Scholar
Jung, Y. D. 2001 Phys. Plasmas 8, 3842.CrossRefGoogle Scholar
Killian, T. C. 2006 Nature (London) 441, 298.CrossRefGoogle Scholar
Malfliet, W. 1992 Am. J. Phys. 60, 650.CrossRefGoogle Scholar
Malkin, V. M., Fisch, N. J. and Wurtele, J. S. 2007 Phys. Rev. E 75, 026404.Google Scholar
Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
Markowich, P. A., Ringhofer, C. A. and Schmeiser, C. 1990 Semiconductor Equations. New York: Springer-Verlag.CrossRefGoogle Scholar
Massey, H. 1976 Negative Ions, 3rd edn.Cambridge, UK: Cambridge University Press; Swider, W. 1988 In: Ionospheric Modeling (ed. Korenkov, J. N.). Basel, Switzerland: Birkhauser.Google Scholar
Sabry, R., Zahran, M. A. and Fan, E. 2004 Phys. Lett. A 326, 93.CrossRefGoogle Scholar
Tomaschitz, R. 2010 Physica B 405, 1022.CrossRefGoogle Scholar
Wang, M., Li, X. and Zhang, J. 2008 Phys. Lett. A 372, 417.CrossRefGoogle Scholar
Washimi, H. and Tanuiti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Wazwaz, A. M. 2002 Partial Differential Equations: Methods and Applications. Netherlands: Balkema.Google Scholar
Wazwaz, A. M. 2005 Appl. Math. Cornput. 162, 1196.Google Scholar
Zhang, J., Wei, X. and Lu, Y. 2008 Phys. Lett. A 372, 3653.CrossRefGoogle Scholar