Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T15:00:00.789Z Has data issue: false hasContentIssue false

Ion-acoustic solitary waves in a multi-species magnetized plasma consisting of non-thermal and isothermal electrons

Published online by Cambridge University Press:  01 December 2008

SKANARUL ISLAM
Affiliation:
Department of Mathematics, Sri Ramakrishna Sarada Vidya Mahapitha, Kamarpukur, Hooghly, 712 612, West Bengal, India
A. BANDYOPADHYAY
Affiliation:
Department of Mathematics, Jadavpur University, Kolkata, 700 032, India
K. P. DAS
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92-Acharya Prfulla Chandra Road, Kolkata, 700 009, India

Abstract

The Korteweg–de Vries–Zakharov–Kuznetsov (KdV-ZK) equation describes the nonlinear behaviour of long-wavelength weakly nonlinear ion-acoustic waves propagating obliquely to an external uniform (space independent) static (time independent) magnetic field in a plasma consisting of warm adiabatic ions and a superposition of two distinct population of electrons, one due to Cairns et al. (1995 Geophys. Res. Lett.22, 2709), which generates the fast energetic electrons, and the other the well-known Maxwell–Boltzman distributed electrons. It is found that the compressive or rarefactive nature of the ion-acoustic solitary wave solution of the KdV-ZK equation does not depend on the ion temperature if σc<0 or σc>1, where σc is a function of β1, nsc and σsc. This β1 is the non-thermal parameter associated with the non-thermal velocity distribution function of electrons (Cairns et al.), nsc is the ratio of the unperturbed number density of the isothermal electrons to that of the non-thermal electrons and σsc is the ratio of the average temperature of the non-thermal electrons to that of the isothermal electrons. The KdV-ZK equation describes compressive or rarefactive ion-acoustic solitary wave according to whether σc<0 or σc>1. When 0 ≤ σc ≤ 1, the KdV-ZK equation describes compressive or rarefactive ion-acoustic solitary wave according to whether σ>σc or σ<σc, where σ is the ratio of the average temperature of ions to the effective temperature of electrons. If σ takes the value σc with 0 ≤ σc ≤ 1, the coefficient of the nonlinear term of the KdV-ZK equation vanishes and for this case the nonlinear evolution equation of the ion-acoustic wave is a modified KdV-ZK (MKdV-ZK) equation. It is found that the four-dimensional parameter space, originated from the physically admissible values of the four-parameters β1, σ, σsc and nsc of the present extended plasma system, can be decomposed into five mutually disjoint subsets with respect to the critical values of the different parameters, and the nonlinear behaviour of the same ion acoustic wave in those subsets can be described by different modified KdV-ZK equations. A general method of perturbation of the dependent variables has been developed to obtain the different evolution equations. The applicability of the different evolution equations and their solitary wave solutions (along with the conditions for their existence) have been investigated analytically and graphically.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Tran, M. Q. 1974 Propagation of solitary waves in a two ion species plasma with finite ion-temperature. Plasma Phys. 16, 11671175.CrossRefGoogle Scholar
[2]Das, G. C. and Tagare, S. G. 1975 Propagation of ion-acoustic waves in a multi-component plasma. Plasma Phys. 17, 10251032.CrossRefGoogle Scholar
[3]Watanabe, S. 1984 Ion acoustic solitons in a plasma with negative ions. J. Phys. Soc. Japan 53, 950956.CrossRefGoogle Scholar
[4]Tagare, S. G. and Reddy, R. V. 1986 Effect of higher order non linearity on propagation of nonlinear ion-acoustic waves in a collisionless plasma consisting of negative ions. J. Plasma Phys. 36, 219237.CrossRefGoogle Scholar
[5]Tagare, S. G. 1986 Effect of ion temperature on ion-acoustic solitons in a two-ion warm plasma with adiabatic positive and negative ions and isothermal electrons. J. Plasma Phys. 36, 301312.CrossRefGoogle Scholar
[6]Verhest, F. 1988. Ion-acoustic solitons in a multi-component plasmas including negative ions at critical densities. J. Plasma Phys. 39, 7179.CrossRefGoogle Scholar
[7]Das, K. P. and Verheest, F. 1989 Ion-acoustic solitons in a magnetized multi-component plasmas including negative ions. J. Plasma Phys. 41, 139155.CrossRefGoogle Scholar
[8]Mishra, M. K., Chhabra, R. S. and Sharma, S. R. 1994 Obliquely propagating ion-acoustic solitons in a multi-component magnetized plasma with negative ions. J. Plasma Phys. 53, 409429.CrossRefGoogle Scholar
[9]Goswami, B. N. and Buti, B. 1976 Ion acoustic solitary waves in a two-electron-temperature plasma. Phys. Lett. A 57, 149150.CrossRefGoogle Scholar
[10]Baboolal, S., Bharuthram, R. and Hellberg, M. A. 1988 Arbitrary amplitude rarefactive ion-acoustic double layers in warm multi-fluid plasmas. J. Plasma Phys. 40, 163178.CrossRefGoogle Scholar
[11]Baboolal, S., Bharuthram, R. and Hellberg, M. A. 1989 Arbitrary amplitude rarefactive ion-acoustic solitons in a warm multi-fluid plasmas. J. Plasma Phys. 44, 344363.Google Scholar
[12]Bharuthram, R. and Sukla, P. K. 1986 Large amplitude ion-acoustic double layers in a double Maxwellian electron plasma. Phys. Fluids 29, 32143218.CrossRefGoogle Scholar
[13]Yadav, L. L., Tiwary, R. S. and Sharma, S. R. 1994 Obliquely propagating ion-acoustic non-linear periodic waves in a magnetized plasma with two electron species. J. Plasma Phys. 51, 355370.CrossRefGoogle Scholar
[14]Yadav, L. L., Tiwary, R. S., Maheshwari, K. P. and Sharma, S. R. 1995 Ion-acoustic non-linear periodic waves in two electron temperature plasma. Phys. Rev. E 52, 30453052.Google Scholar
[15]Tagare, S. G. 2000 Ion-acoustic solitons and double layers in a two electron temperature plasma with hot isothermal electrons and cold ions. Phys. Plasmas 7, 883888.CrossRefGoogle Scholar
[16]Nakamura, Y. and Tsukabyasi, I. 1984 Observation of modified Kortewege–de vries solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 52, 23562359.CrossRefGoogle Scholar
[17]Nakamura, Y. and Tsukabyasi, I. 1985 Modified kortewege -de vries ion-acoustic solitons in a plasma. J. Plasma Phys. 34, 401415.CrossRefGoogle Scholar
[18]Nakamura, Y., Ferreira, J. L. and Ludwig, G. O. 1985 Experiments on ion-acoustic rarefactive solitons in a multicomponent plasma with negative ions. J. Plasma Phys. 33, 237248.CrossRefGoogle Scholar
[19]Nishida, Y. and Nagasawa, T. 1985 Excitation of ion-acoustic rarefactive solitons in a two-electron-temperature plasma. Phys. Fluids 29, 345348.CrossRefGoogle Scholar
[20]Nakamura, Y. 1987 Observation of large amplitude ion-acoustic solitary waves in a plasma. J. Plasma Phys. 38, 461471CrossRefGoogle Scholar
[21]Cooney, J. L., Gavin, M. T. and Lonngreen, K. E. 1991 Experiments on Kortewege-de Vries solitons in a positive ion-negative ion plasma. Phys. Fluid B 3, 27582766CrossRefGoogle Scholar
[22]Dovner, P. O., Eriksson, A. I., Böstrom, R. and Holback, B. 1994 Freja multiprobe observations of electrostatic solitary structures. Geophys. Res. Lett. 21, 18271830.CrossRefGoogle Scholar
[23]Cairns, R. A., Mamun, A. A., Bingham, R., Dendy, R. O., Böstrom, R., Shukla, P. K. and Nairn, C. M. C. 1995 Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 27092712.CrossRefGoogle Scholar
[24]Cairns, R. A., Bingham, R., Dendy, R. O., Nairn, C. M. C., Shukla, P. K. and Mamun, A. A. 1995 Ion Sound Solitary Waves with Density Depressions. J. Physique 5, C6 - 43–48.Google Scholar
[25]Cairns, R. A., Mamun, A. A., Bingham, R. and Shukla, P. K. 1995 Ion-acoustic Solitons in a Magnetized Plasma with Nonthermal Electrons. Physica Scripta T63, 8086.CrossRefGoogle Scholar
[26]Sato, T. and Okuda, H. 1980 Ion-Acoustic Double Layers. Phy. Rev. Lett. 44, 740743.CrossRefGoogle Scholar
[27]Temerin, M., Cerny, K., Lotko, W. and Mozer, F. S. 1982 Observations of Double Layers and Solitary Waves in the Auroral Plasma. Phy. Rev. Lett. 48, 11751179.CrossRefGoogle Scholar
[28]Böstrom, R., Gustafsson, G., Holback, B., Holmgren, G., Koskinen, H. and Kintner, P. 1988 Characteristics of solitary waves and weak double layers in the magnetospheric plasma. Phy. Rev. Lett. 61, 8285.CrossRefGoogle ScholarPubMed
[29]Böstrom, R. 1992 Observations of weak double layers on auroral field lines. IEEE Trans. Plasma Sci. 20, 756763.CrossRefGoogle Scholar
[30]Vago, J. L., Kintner, P. M., Chesney, S. W., Arnoldy, R. L., Lynch, K. A., Moore, T. E. and Pollock, C. J. 1992 Transverse ion acceleration by localized lower-hybrid waves in the topside auroral ionosphere. J. Geophys. Res. 97, 1693516957.CrossRefGoogle Scholar
[31]Han, J. M. and Kim, K. Y. 1994 Weak nonmonotonic double layers and sock-like structures in multispecies plasma. Plasma Phys. Control. Fusion 36, 11411157.CrossRefGoogle Scholar
[32]Kim, S. S. and Kim, K. Y. 1998 Ion mass effects on sock-like structures in multi-species plasma. Plasma Phys. Control. Fusion 40, 13131325.CrossRefGoogle Scholar
[33]Schamel, H. 1986 Electron holes, ion holes and double layers: electrostatic phase space structures in theory and experiment. Phys. Rep. 140, 161191.CrossRefGoogle Scholar
[34]Schamel, H. 2000 Hole equlibria in Vlasov–Poisson systems: a challenge to wave theories of ideal plasmas. Phys. Plasmas 7, 48314844.CrossRefGoogle Scholar
[35]Luque, A. and Schamel, H. 2005 Electrostatic trapping as a key to the dynamics of plasmas, fluids and other collective systems. Phys. Rep. 415, 261359.CrossRefGoogle Scholar
[36]Schamel, H. 1982 Stability of electron vortex structures in phase space. Phys. Rev. Lett. 48, 481483.CrossRefGoogle Scholar
[37]Schamel, H. 1987 On the Stability of localized electrostatic structures. Z. Naturforsch. 42a, 11671174.CrossRefGoogle Scholar
[38]Mamun, A. A. and Cairns, R. A. 1996 Stability of solitary waves in a magnetized non-thermal plasma. J. Plasma Phys. 56, 175185.CrossRefGoogle Scholar
[39]Bandyopadhyay, A. and Das, K. P. 1999 Stability of solitary waves in a magnetized non-thermal plasma with warm ions. J. Plasma Phys. 62, 255267.CrossRefGoogle Scholar
[40]Bandyopadhyay, A. and Das, K. P. 2000 Ion-acoustic double layers and solitary waves in a magnetized plasma consisting of warm ions and non-thermal electrons. Physica Scripta 61, 9296.CrossRefGoogle Scholar
[41]Bandyopadhyay, A. and Das, K. P. 2000 Stability of solitary kinetic Alfvén waves and ion-acoustic waves in a non-thermal plasma. Phys. Plasmas 7, 32273237.CrossRefGoogle Scholar
[42]Bandyopadhyay, A. and Das, K. P. 2001 Stability of ion-acoustic double layers in a magnetized plasma consisting of warm ions and non-thermal electrons. Physica Scripta 63, 145149.CrossRefGoogle Scholar
[43]Bandyopadhyay, A. and Das, K. P. 2001 Growth rate of instability of obliquely propagating ion-acoustic solitons in a magnetized non-thermal plasma. J. Plasma Phys. 65, 131150.CrossRefGoogle Scholar
[44]Bandyopadhyay, A. and Das, K. P. 2002 Higher order growth rate of instability of obliquely propagating kinetic Alfvén and ion-acoustic solitons in a magnetized non-thermal plasma. J. Plasma Phys. 68, 285303.CrossRefGoogle Scholar
[45]Bandyopadhyay, A. and Das, K. P. 2002 Effect of Landau damping on ion-acoustic solitary waves in a magnetized non-thermal plasma with warm ions. Phys. Plasmas 9, 465473.CrossRefGoogle Scholar
[46]Bandyopadhyay, A. and Das, K. P. 2002 Effect of Landau damping on kinetic Alfvén and ion-acoustic solitary waves in a magnetized non-thermal plasma with warm ions. Phys. Plasmas 9, 33333340.CrossRefGoogle Scholar
[47]Das, J., Bandyopadhyay, A. and Das, K. P. 2006 Stability of an alternative solitary wave solution of an ion-acoustic wave obtained from MKdV-KdV-ZK equation in magnetized non-thermal plasma consisting of warm adiabatic ions. J. Plasma Phys. 72, 587604.CrossRefGoogle Scholar
[48]Das, J., Bandyopadhyay, A. and Das, K. P. 2007 Alternative ion-acoustic solitary waves in magnetized plasma consisting of warm adiabatic ions and non-thermal electrons having Vortex-like velocity distribution: existence and stability. J. Plasma Phys. 73, 869899.CrossRefGoogle Scholar
[49]Das, J., Bandyopadhyay, A. and Das, K. P. 2008 Ion-acoustic double layers in magnetized plasma consisting of warm adiabatic ions and non-thermal electrons having vortex-like velocity distribution : existence and stability. J. Plasma Phys. 74, 163186.CrossRefGoogle Scholar
[50]Das, J., Bandyopadhyay, A. and Das, K. P. 2007 Existence and stability of alternative ion acoustic solitary wave solution of the combined MKdV-KdV-ZK equation in a magnetized non-thermal plasma consisting of warm adiabatic ions. Phys. Plasmas 14, 092304-1092304-10.CrossRefGoogle Scholar
[51]Mamun, A. A. 1997 Effect of ion-temperature on electrostatic solitary structures in non-thermal plasmas. Phys. Rev. E 55, 18521857.Google Scholar
[52]Mamun, A. A. 1998 Instability of obliquely propagating electrostatic solitary waves in magnetized non-thermal dusty plasma. Physica Scripta 58, 505509.CrossRefGoogle Scholar
[53]Mamun, A. A and Alam, M. N. 1998 Low frequency electrostatic modes in a magnetized Gravitating Dusty plasma with non-thermal ions. Physica Scripta 57, 535537.CrossRefGoogle Scholar
[54]Mamun, A. A. 1998 Effects of dust temperature and fast ions on gravitational instability in a self-gravitation magnetized dusty plasma. Phys. Plasmas 5, 35423546.CrossRefGoogle Scholar
[55]Mamun, A. A. 1997 Nonlinear propagation of ion-acoustic waves in a hot magnetized plasma with vortexlike electron distribution. Phys. Plasmas 5, 322324.CrossRefGoogle Scholar
[56]Mamun, A. A., Russell, S. M., Mendoza-Briceño, César. A., Alam, M. N., Datta, T. K. and Das, A. K. 2000 Multi-dimensional instability of electrostatic solitary structures in magnetized non-thermal dusty plasmas. Planet. Space Sci. 48, 163173.CrossRefGoogle Scholar
[57]Mamun, A. A and Shukla, P. K. 2002 Electrostatic solitary and shock structures in dusty plasmas. Physica Scripta T98, 107114.CrossRefGoogle Scholar
[58]Pillay, S. R. and Verheest, F. 2005 Effect of non-thermal ion distributions on the Jeans instability in dusty plasmas. J. Plasma Phys. 71, 177184.CrossRefGoogle Scholar
[59]Kourakis, I. and Shukla, P. K. 2005 Modulated dust-acoustic wave packets in a plasma with non-isothermal electrons and ions. J. Plasma Phys. 71, 185201.CrossRefGoogle Scholar
[60]Verheest, F and Pillay, S. R. 2008 Large amplitude dust-acoustic solitary waves and double layers in non-thermal plasmas. Phys. Plasmas 15, 013703-1013703-11.CrossRefGoogle Scholar
[61]Wolfram, S. 1996 The Mathemetica Book, 3rd edn.Wolfram Media/Cambridge University Press.Google Scholar