Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T13:20:30.388Z Has data issue: false hasContentIssue false

Ion–acoustic instability of the positive column

Published online by Cambridge University Press:  13 March 2009

D. B. Ilić
Affiliation:
Institute for Plasma Research, Stanford University
G. M. Wheeler
Affiliation:
Institute for Plasma Research, Stanford University
F. W. Crawford
Affiliation:
Institute for Plasma Research, Stanford University
S. A. Self
Affiliation:
Institute for Plasma Research, Stanford University

Abstract

The excitation characteristics of the current-driven ion acoustic instability are studied, using a linearized kinetic model for a weakly ionized, unmagnetized plasma. Convective instability is predicted for typical low-pressure positive column conditions. The calculated spatial growth rates show a variation with frequency, which is similar to that of the amplitude variation with frequency of the self-excited instability measured in our positive column experiments in helium and argon. The comparison between theory and experiment indicates that ion Landau damping is significant for typical experimental conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexeff, I. & Jones, W. D. 1966 Phys. Rev. Letters, 20, 269.CrossRefGoogle Scholar
Arunasalam, V. & Brown, S. C. 1965 Phys. Rev. 140, A471.Google Scholar
Briggs, F. J. 1964 Electron-Stream Interaction with Plasmas. MIT.CrossRefGoogle Scholar
Clemmow, P. C. & Dougherty, J. P. 1969 Electrodynamics of Particles and Plasmas.Addison-Wesley.Google Scholar
Crawford, F. W. & Kino, G. S. 1961 Proc. I.R.E. 49, 1767.CrossRefGoogle Scholar
Crawford, F. W. 1963 Phys. Letters, 4, 135.CrossRefGoogle Scholar
Derfler, H. 1970 Phys. Rev. A 1, 1467.CrossRefGoogle Scholar
Derfler, H. & Simonen, T. C. 1969 Phys. Fluids, 12, 269.Google Scholar
Ewald, H. N., Crawford, F. W. & Self, S. A. 1969 Phys. Fluids, 12, 303.CrossRefGoogle Scholar
Fenneman, D. B., Raether, M. & Yamada, M. 1973 Phys. Fluids, 16, 871.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Fried, D. B. & Gould, R. W. 1961 Phys. Fluids, 4, 139.CrossRefGoogle Scholar
Fujiwara, M., Raether, M. & Yamada, M. 1969 J. Phys. Soc. Japan, 27, 758.CrossRefGoogle Scholar
Ilić, D. B. 1973 J. Appl. Phys. 44, 3993.Google Scholar
Laframboise, J. G. 1966 University of Toronto Institute for Aerospace Studies Rep 100.Google Scholar
Milić, B. & Rukhadze, A. A. 1968 Soviet Phys. Tech. Phys. 13, 166.Google Scholar
Rognlien, T. D. & Self, S. A. 1972 J. Plasma Phys. 7, 13.CrossRefGoogle Scholar
Self, S. A. & Shih, C. H. 1968 Phys. Fluids, 11, 1532.CrossRefGoogle Scholar
Tanaca, H., Hirose, A. & Koganei, M. 1967 Phys. Rev. 161, 94.CrossRefGoogle Scholar
Yamada, M. 1973 Ph.D. thesis, University of Illinois.Google Scholar
Zaitsev, A. A., Milić, B., Rukhadze, A. A. & Shvilkin, B. N. 1967 Soviet Phys. Tech. Phys. 12, 1175.Google Scholar