Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T03:32:57.206Z Has data issue: false hasContentIssue false

Ion holes in dusty pair plasmas

Published online by Cambridge University Press:  01 December 2008

HANS SCHAMEL*
Affiliation:
Physikalisches Institut, Universität Bayreuth, D-95466 Bayreuth, Germany ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The existence of Bernstein–Greene–Kruskal (BGK)-like trapped ion modes in dusty plasmas is investigated by means of the pseudo-potential method applied to the Vlasov–Poisson system. The nonlinear dispersion relation, determining the phase velocity, and the pseudo-potential, representing the wave form and hence its spectral decomposition, are derived and analysed with respect to the effect of dust. Dust is found to diminish the region in ω, k-space, where periodic wave solutions of fast and slow mode character exist. Localized wave solutions in the form of solitary ion holes, owing their existence to the presence of dust, coexist as well, but turn into slow ion acoustic double layers in the limit of vanishing dust.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2008

References

[1]Holloway, J. P. and Dorning, J. J. 1991 Phys. Rev. A 44, 3856.CrossRefGoogle Scholar
[2]Korn, J. and Schamel, H. 1996 J. Plasma Phys. 56, 307, 339.CrossRefGoogle Scholar
[3]Schamel, H. 1997 Phys. Rev. Lett. 79, 2811.CrossRefGoogle Scholar
[4]Schamel, H. 2000 Phys. Plasmas 7, 4831.CrossRefGoogle Scholar
[5]Luque, A. and Schamel, H. 2005 Phys. Rep. 415, 261.CrossRefGoogle Scholar
[6]Tsunoda, S. I., Doveil, F. and Malmberg, J. H. 1991 Phys. Fluids B 3, 2747.CrossRefGoogle Scholar
[7]Laval, G. and Pesme, D. 1983 Phys. Fluids 26, 52, 66.CrossRefGoogle Scholar
[8]Pesme, D. 1994 Phys. Scr. T 50, 7.CrossRefGoogle Scholar
[9]Berman, R. H., Tetreault, D. J. and Dupree, T. H. 1985 Phys. Fluids 28, 155. and references therein.CrossRefGoogle Scholar
[10]Griessmeier, J.-M., Luque, A. and Schamel, H. 2002 Phys. Plasmas 9, 3816.CrossRefGoogle Scholar
[11]Luque, A., Schamel, H., Eliasson, B. and Shukla, P. K. 2005 Phys. Plasmas 12, 122307.CrossRefGoogle Scholar
[12]Schamel, H. and Luque, A. 2005 Space Sci. Rev. 121, 313.CrossRefGoogle Scholar
[13]Scott, B. 2005 Phys. Plasmas 12, 062314.CrossRefGoogle Scholar
[14]Schamel, H., Das, N. and Rao, N. N. 2001 Phys. Plasmas 8, 671.CrossRefGoogle Scholar
[15]Schamel, H. and Luque, A. 2005 New J. Phys. 7, 69.CrossRefGoogle Scholar
[16]Eliasson, B. and Shukla, P. K. 2005 Phys. Rev. E 71, 046402.Google Scholar
[17]Schamel, H. 1986 Phys. Rep. 140, 161.CrossRefGoogle Scholar
[18]Eliasson, B. and Shukla, P. K. 2006 Phys. Rep. 422, 225.CrossRefGoogle Scholar
[19]Schamel, H. 1972 Plasma Phys. 14, 905.CrossRefGoogle Scholar
[20]Schamel, H. and Bujarbarua, S. 1980 Phys. Fluids 23, 2498.CrossRefGoogle Scholar
[21]Schamel, H. 1983 Z. Naturforsch. 38a, 1170.CrossRefGoogle Scholar
[22]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: IOP Publishing.CrossRefGoogle Scholar
[23]Oohara, W. and Hatakeyama, R. 2003 Phys. Rev. Lett. 91, 205005.CrossRefGoogle Scholar
[24]Hatakeyama, R. and Oohara, W. 2005 Phys. Scr. T 116, 101.CrossRefGoogle Scholar
[25]Oohara, W., Date, D. and Hatakeyama, R. 2005 Phys. Rev. Lett. 95, 175003.CrossRefGoogle Scholar
[26]Oohara, W., Kuwabara, G. and Hatakeyama, R. 2007 Phys. Rev. E 75, 056403.Google Scholar