Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T05:12:06.199Z Has data issue: false hasContentIssue false

Ion dynamics in a perpendicular collisionless shock

Published online by Cambridge University Press:  13 March 2009

D. Sherwell
Affiliation:
Department of Applied Mathematics, University of St Andrews, St Andrews, Fife, Scotland
R. A. Cairns
Affiliation:
Department of Applied Mathematics, University of St Andrews, St Andrews, Fife, Scotland

Abstract

Some properties of perpendicular collisionless shocks are investigated, using a model in which the ion orbits in the shock are assumed to be determined by the average electric and magnetic fields in the shock. These fields are modelled, with the jump in magnetic field across the shock being determined by the conservation relations, and the potential jump determined self-consistently within the model, using the fact that the mean ion velocity downstream of the shock is determined by the conservation relations. Extensive numerical calculations of ion orbits show that effective ion heating can occur in the absence of any dissipative process, with the energy residing in non-Maxwellian velocity distributions in the downstream regions. Results on this and on a number of other features of shock waves, agree well with experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auer, P. L., Kilb, R. W., Crevier, W. F. 1971 J. Geophys. Res. 76, 2927.CrossRefGoogle Scholar
Biskamp, D. 1973 Nucl. Fusion, 13, 719.CrossRefGoogle Scholar
Cairnes, R. A. 1972 Phys. Lett. 38A, 445.CrossRefGoogle Scholar
Eselevich, V. G., Es'kov, A. G., Kurtmullaev, R. Kh. & Malyutin, A. I. 1971 Soviet Phys. JETP, 33, 1120.Google Scholar
Hintz, E. 1969 Plasma Physics and Controlled Nuclear Fusion Research vol. 1, p. 69. IAEA.Google Scholar
Keilhacker, M., Kornherr, M. & Steuer, K. H. 1969 Z. Physik, 223, 385.CrossRefGoogle Scholar
Keilhacker, M., Kornherr, M., Niedermeyer, H., Steuer, K. H. & Chodura, R. 1971 Plasma Physics and Controlled Nuclear Fusion Research vol. 3, p. 265. IAEA.Google Scholar
Kornherr, M. 1970 Z. Physik, 233, 37.CrossRefGoogle Scholar
Montgomery, M. D., Ashbridge, J. R. & Bame, S. J. 1970 J. Geophys. Res. 75, 1217.CrossRefGoogle Scholar
Neugebauer, M. 1970 J. Geophys. Res. 75, 717.CrossRefGoogle Scholar
Papadopoulos, K., Davidson, R. C., Dawson, J. M., Haber, I., Hammer, D. A., Krall, N. A. & Shanny, R. 1971 Phys. Fluids, 11, 849.CrossRefGoogle Scholar
Paul, J. W. M., Holmes, L. S., Parkinson, M. J. & Sheffield, J. 1965 Nature, 208, 133.CrossRefGoogle Scholar
Paul, J. M. W., Goldenbaum, G. C., Illyoshi, A., Holmes, L. S. & Hardcastle, R. A. 1967 Nature 216, 363.CrossRefGoogle Scholar
Phillips, P. E. & Robson, A. E. 1972 Phys. Rev. Lett. 29, 154.CrossRefGoogle Scholar
Schumacher, N. 1969 Plasma Physics and Controlled Nuclear Fusion Research, vol. 1, p. 93. IAEA.Google Scholar
Tidman, D. A. & Krall, N. A. 1971 Shock Waves in Collisionless Plasmas. Wiley. Interscienco.Google Scholar
Woods, L. C. 1969 Plasma Phys. 11, 967.CrossRefGoogle Scholar