Article contents
Ion acoustic waves in expanding strongly coupled plasmas
Published online by Cambridge University Press: 30 July 2013
Abstract
We consider the excitation and dispersion of ion acoustic waves in expanding ultracold plasmas, taking into account the influence of boundary conditions. A cylindrical plasma geometry is assumed. We show that temporal changes in the medium lead to a wave frequency shift, associated with an evolving radial and standing wave mode structure, and to the temporal change of the background plasma parameters. A non-collisional model for the cylindrical geometry is also proposed.
- Type
- Papers
- Information
- Journal of Plasma Physics , Volume 79 , Special Issue 6: Special issue in memory of Professor Padma Kant Shukla 1950-2013 , December 2013 , pp. 1063 - 1066
- Copyright
- Copyright © Cambridge University Press 2013
References
Castro, J., McQuillen, P. and Killian, T. C. 2010 Ion acoustic waves in ultracold neutral plasmas. Phys. Rev. Lett. 105, 065004.CrossRefGoogle ScholarPubMed
Fletcher, R. S., Zhang, X. L. and Rolston, S. L. 2006 Quan-titative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics. Phys. Rev. Lett. 96, 105003.CrossRefGoogle Scholar
Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005 Complex (dusty) plasmas: current status, open issues, perspectives. Phys. Rep. 421, 1.CrossRefGoogle Scholar
Kaw, P. K. and Sen, A. 1998 Low frequency modes in strongly coupled dusty plasmas. Phys. Plasmas 5, 3552.CrossRefGoogle Scholar
Killian, T. C., Pattard, T., Pohl, T. and Rost, J. 2007 Ultracold neutral plasmas. Phys. Rep. 77, 449.Google Scholar
Kulin, S., Killian, T. C., Bergeson, S. D. and Rolston, S. L. 2000 Plasma oscillations and expansion of an ultracold neutral plasma. Phys. Rev. Lett. 85, 318.CrossRefGoogle ScholarPubMed
Manfredi, G., Mola, S. and Feix, M. R. 1993 Rescaling methods and plasma expansions into vacuum. Phys. Fluids B 5, 388.CrossRefGoogle Scholar
Mendonça, J. T. 2001 Theory of Photon Acceleration. Bristol: Institute of Physics Publ.CrossRefGoogle Scholar
Mendonça, J. T. 2009 Time refraction in expanding plasma bubbles. New J. Phys. 11, 013029.CrossRefGoogle Scholar
Mendonça, J. T., Loureiro, J. and Terças, H. 2009 Waves in Rydberg plasmas. J. Plasma Phys. 51, 024007.Google Scholar
Mendonça, J. T. and Shukla, P. K. 2011 Ion-acoustic waves in a nonstationary ultra-cold neutral plasma. Phys. Plasmas 18, 042101.CrossRefGoogle Scholar
Mendonça, J. T., Shukla, N. and Shukla, P. K. 2010 Magnetization of Rydberg plasmas by electromagnetic waves. J. Plasma Phys. 76, 19–23.CrossRefGoogle Scholar
Robicheaux, F. and Hanson, J. D. 2003 Simulated expansion of an ultra-cold, neutral plasma. Phys. Plasmas 10, 2217.CrossRefGoogle Scholar
Robinson, M. P., Tolra, B. L., Noel, M. W., Gallagher, T. F. and Pillet, P. 2000 Spontaneous evolution of Rydberg atoms into an ultracold plasma. Phys. Rev. Lett. 85, 4466.CrossRefGoogle ScholarPubMed
Shukla, P. K. 2010 Properties of electrostatic waves in ultracold neutral plasmas. Phys. Lett. A 374, 3656.CrossRefGoogle Scholar
Shukla, P. K. and Avinash, K. 2011 Phase coexistence and a critical point in ultracold neutral plasmas. Phys. Rev. Lett. 107, 135002.CrossRefGoogle Scholar
Shukla, P. K., Stenflo, L. and Morfill, G. E. 2003 Nonlinear instability of dust ion-acoustic waves in a plasma with strongly correlated dust grains. IEEE Trans. Plasma Sci. 31, 119–122.CrossRefGoogle Scholar
Zhang, X. L., Fletcher, R. S. and Rolston, S. L. 2008 Observation of an ultracold plasma instability. Phys. Rev. Lett. 101, 195002.CrossRefGoogle ScholarPubMed
- 2
- Cited by