Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T05:13:43.412Z Has data issue: false hasContentIssue false

Ion acoustic wave modulation in a dusty plasma in presence of ion loss, collision and ionization

Published online by Cambridge University Press:  26 September 2016

Subrata Sarkar
Affiliation:
Department of Physics, University of Gour Banga, Malda-732103, India
Ashish Adak*
Affiliation:
Department of Instrumentation Science, Jadavpur University, Kolkata - 700 032, India
Samiran Ghosh
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata - 700 009, India
Manoranjan Khan
Affiliation:
Department of Instrumentation Science, Jadavpur University, Kolkata - 700 032, India
*
Email address for correspondence: [email protected]

Abstract

The effects of ionization, ion loss and ion-neutral collisions on ion acoustic wave modulations in a dusty plasma are investigated. It is found that the dynamics of the modulated wave is governed by a nonlinear Schrödinger equation with a linear dissipative (damping or growth) term. This linear dissipative term arises due to the combined influence of ionization, ion loss and ion-neutral collisions. Analytical and numerical investigations predict the formation of envelope (bright) soliton with growing or decaying amplitude with time. The ionization instability causes the amplitude amplification, whereas, ion loss and ion-neutral collisions are responsible for the amplitude decay. Results are discussed in the context of dusty plasma experiments.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablowitz, M. J. & Suger, H. 1981 Solitons and the Inverse Scattering Transform. SIAM.CrossRefGoogle Scholar
Akhmediev, N. & Ankiewicz, A. 1977 Solitons, Nonlinear Pulses and Beams. Chapman and Hall.Google Scholar
Akhmediev, N., Ankiewicz, A. & Soto-Crespo, J. M. 2009 Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601.Google ScholarPubMed
Akhiezer, A. I., Akhiezer, I. A. & Angeleiko, V. V. 1970 A new kind of instability in a partially ionized plasma. Sov. Phys. JETP 30, 476479.Google Scholar
Amin, M. R., Morfill, G. E. & Shukla, P. K. 1998 Modulational instability of dust-acoustic and dust-ion-acoustic waves. Phys. Rev. E 58, 6517.Google Scholar
Asano, N., Taniuti, T. & Yajima, N. 1969 Perturbation method for a nonlinear wave modulation. II. J. Math. Phys. 10, 2020.CrossRefGoogle Scholar
Avinash, K. 2001 Ionization instability of acoustic modes in dusty plasma with ion drag and charging dynamics. Phys. Plasmas 8, 351.CrossRefGoogle Scholar
Bandyopadhyay, P., Prasad, G., Sen, A. & Kaw, P. K. 2008 Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma. Phys. Rev. Lett. 101, 065006.CrossRefGoogle Scholar
Barkan, A., Merlino, R. & D’Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 3563.CrossRefGoogle Scholar
Barkan, A., D’Angelo, N. & Merlino, R. L. 1996 Experiments on ion-acoustic waves in dusty plasmas. Planet. Space Sci. 44, 239242.CrossRefGoogle Scholar
Bellan, P. M. 2011 Fundamentals of Plasma Physics. Cambridge University Press.Google Scholar
Chabchoub, A., Neumann, S., Hoffmann, N. P. & Akhmediev, N. 2012 Spectral properties of the Peregrine soliton observed in a water wave tank. J. Geophys. Res. 117, C00J03.CrossRefGoogle Scholar
Chen, F. F. 1990 Introduction to Plasma Physics and Controlled Fusion. Plenum Press.Google Scholar
D’Angelo, N. 1997 Ionization instability in dusty plasmas. Phys. Plasmas 4, 3422.CrossRefGoogle Scholar
D’Angelo, N. 1998 Dusty plasma ionization instability with ion drag. Phys. Plasmas. 5, 3155.CrossRefGoogle Scholar
Durrani, I. R., Murtaza, G., Rahaman, H. U. & Azhar, I. A. 1979 Effect of ionic temperature on the modulational instability of ion acoustic waves in a collisionless plasma. Phys. Fluids 22, 791.CrossRefGoogle Scholar
Ghosh, S. 2006 Weakly dissipative ion acoustic solitary waves in a dusty plasma: roles of dust charge variation, ion loss and ionization. J. Plasma Phys. 73, 515521; 2005 Effect of ionization on ion acoustic solitary waves in a collisional dusty plasma. J. Plasma Phys. 71 519–526.CrossRefGoogle Scholar
Ghosh, S., Khan, M. & Bharuthram, R. 2006a Electron–ion attachment induced instability of dust acoustic waves in the presence of ionization in a charge varying collisional dusty plasma. Phys. Scr. 74, 489.CrossRefGoogle Scholar
Ghosh, S., Khan, M. & Gupta, M. R. 2006b Nonsteady dust charge variation induced ion acoustic monotonic shock structure in dusty plasma: roles of ionization, ion loss, and collision. Phys. Plasmas 13, 102312.Google Scholar
Ghosh, S., Sarkar, S., Khan, M. & Gupta, M. R. 2011 Low-frequency wave modulations in an electronegative dusty plasma in the presence of charge variations. Phys. Rev. E 84, 066401.Google Scholar
Ikezi, H., Schwarzenegger, K., Simons, A. L., Ohsawa, Y. & Kamimura, T. 1978 Nonlinear self-modulation of ion-acoustic waves. Phys. Fluids 21, 239.CrossRefGoogle Scholar
Ivlev, A. V., Samsonov, D., Goree, J., Morfill, G. & Fortov, V. E. 1999 Acoustic modes in a collisional dusty plasma. Phys. Plasmas 6, 741.CrossRefGoogle Scholar
Johnson, J. C., D’Angelo, N. & Merlino, R. L. 1990 A double layer induced ionisation instability. J. Phys. D 23, 682.CrossRefGoogle Scholar
Kaw, P. & Singh, R. 1997 Collisional instabilities in a dusty plasma with recombination and ion-drift effects. Phys. Rev. Lett. 79, 423.CrossRefGoogle Scholar
Luo, Q. Z., D’Angelo, N. & Merlino, R. L. 1999 On Alfvén waves in a flowing atmosphere. Phys. Plasmas 6, 3345.Google Scholar
Merlino, R. L. 1997 Current-driven dust ion-acoustic instability in a collisional dusty plasma. IEEE Trans. Plasma Sci. 25, 60.CrossRefGoogle Scholar
Merlino, R. L., Barkan, A., Thompson, C. & D’Angelo, N. 1998 Laboratory studies of waves and instabilities in dusty plasmas. Phys. Plasmas 5, 1607.CrossRefGoogle Scholar
Merlino, R. L. & Kim, S. H. 2006 Charge neutralization of dust particles in a plasma with negative ions. Appl. Phys. Lett. 89, 091501.CrossRefGoogle Scholar
Nakamura, Y., Bailung, H. & Shukla, P. K. 1999 Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 1602.CrossRefGoogle Scholar
Nakamura, Y. & Sharma, A. K. 2001 Observation of ion-acoustic solitary waves in a dusty plasma. Phys. Plasmas 8, 3921.CrossRefGoogle Scholar
Ostrikov, K. N., Yu, M. Y., Vladimirov, S. V. & Ishihara, O. 1999 On the realization of the current-driven dust ion-acoustic instability. Phys. Plasmas 6, 737.CrossRefGoogle Scholar
Ostrikov, K. N., Kumar, S. & Sugai, H. 2001 Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions. Phys. Plasmas 8, 3490.CrossRefGoogle Scholar
Pereira, N. R. & Stelnflo, L. 1977 Nonlinear Schrödinger equation including growth and damping. Phys. Fluids 20, 1733.CrossRefGoogle Scholar
Peregrine, D. H. 1983 Water waves, nonlinear Schrödinger equations and their solutions. J. Austral. Math. Soc. B 25, 16.CrossRefGoogle Scholar
Popel, S. I., Yu, M. Y. & Tsytovich, V. N. 1996 Shock waves in plasmas containing variable-charge impurities. Phys. Plasmas 3, 4313.CrossRefGoogle Scholar
Prabhuram, G. & Goree, J. 1996 Experimental observation of very low-frequency macroscopic modes in a dusty plasma. Phys. Plasmas 3, 1212.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543546.CrossRefGoogle Scholar
Rosenberg, M. 2009 On dust acoustic instability in a negative ion plasma. Phys. Scr. 79, 015008.CrossRefGoogle Scholar
Rosenberg, M. 2013 Current-driven drift wave instability in a collisional dusty negative ion plasma. J. Plasma Phys. 79, 11131116.CrossRefGoogle Scholar
Samsonov, D. & Goree, J. 1999 Instabilities in a dusty plasma with ion drag and ionization. Phys. Rev. E 59, 1047.Google Scholar
Shukla, P. K. & Morfill, G. 1996 Ionization instability of dust-acoustic waves in weakly ionized colloidal plasmas. Phys. Lett. A 216, 153.CrossRefGoogle Scholar
Shukla, P. K. & Silin, V. P. 1992 Dust ion-acoustic wave. Phys. Scr. 45, 508.CrossRefGoogle Scholar
Shukla, P. K. & Stelflo, L. 2007 Nonlinear interactions between upper-hybrid and Alfvén modes in a magnetized plasma containing charged dust impurities. J. Plasma Phys. 73, 38.CrossRefGoogle Scholar
Taniuti, T. & Yajima, N. 1969 Perturbation method for a nonlinear wave modulation. I. J. Math. Phys. 10, 1369.CrossRefGoogle Scholar
Thompson, C., Barkan, A., Angelo, N. D & Merlino, R. L. 1997 Dust acoustic waves in a direct current glow discharge. Phys. Plasmas 4, 2331.CrossRefGoogle Scholar
Vladimirov, S. V., Ostrikov, K. N. & Yu, M. Y. 1999 Ion-acoustic waves in a dust-contaminated plasma. Phys. Rev. E 60, 3257.CrossRefGoogle Scholar
Wang, X., Bhattacherjee, A., Guo, S. K. & Goree, J. 2001 A new class of exact solutions of the Vlasov equation. Phys. Plasmas 8, 5018.CrossRefGoogle Scholar
Zhang, J. & Wang, Y. 2006 Three-dimensional nonlinear Schrödinger equation for dust-acoustic waves and its stability in magnetized dusty plasma with two-temperature nonthermal ions and dust charge variation. Phys. plasmas 13, 022304.Google Scholar