Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T07:01:18.139Z Has data issue: false hasContentIssue false

Investigation of non-Newtonian behavior of dusty plasma liquid

Published online by Cambridge University Press:  29 January 2010

A. V. GAVRIKOV
Affiliation:
Joint Institute for High Temperatures RAS, 125412, Izhorskaya st., 13, bd. 2, Moscow, Russia ([email protected]) Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
D. N. GORANSKAYA
Affiliation:
Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
A. S. IVANOV
Affiliation:
Joint Institute for High Temperatures RAS, 125412, Izhorskaya st., 13, bd. 2, Moscow, Russia ([email protected])
O. F. PETROV
Affiliation:
Joint Institute for High Temperatures RAS, 125412, Izhorskaya st., 13, bd. 2, Moscow, Russia ([email protected]) Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
R. A. TIMIRKHANOV
Affiliation:
Joint Institute for High Temperatures RAS, 125412, Izhorskaya st., 13, bd. 2, Moscow, Russia ([email protected]) Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
N. A. VORONA
Affiliation:
Joint Institute for High Temperatures RAS, 125412, Izhorskaya st., 13, bd. 2, Moscow, Russia ([email protected]) Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
V. E. FORTOV
Affiliation:
Joint Institute for High Temperatures RAS, 125412, Izhorskaya st., 13, bd. 2, Moscow, Russia ([email protected]) Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia

Abstract

The paper presents experimental investigation of flow of dusty plasma medium formed by macroparticles in argon plasma. The dependences of the coefficient of shear viscosity of such liquid on the external force causing the flow of dusty plasma liquid and on the pressure of plasma-generating gas are studied. It is found that the viscosity of the dusty plasma medium decreases with increasing shear stress and increases with increasing pressure of buffer gas. An experimental investigation of the dynamics of macroparticles in an unperturbed liquid dusty plasma medium as a function of coupling parameter is performed; in so doing, formations of particles whose motion is correlated are observed in the region of high values of coupling parameter. It is assumed that the non-Newtonian pattern of dusty plasma liquid may be due to the emergence of crystal-like dusty plasma clusters in the ‘liquid’ phase. An experimental investigation of a crystalline dusty plasma structure under the effect of laser radiation is performed; in so doing, a macroscopic flow of the crystalline dusty plasma structure is observed under the effect of shear stress. The mechanism of formation and subsequent annihilation of edge misfit dislocations is observed and the threshold pattern of such flow is established; the threshold value of power of laser radiation is determined.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Fortov, V. E., Gavrikov, A. V., Petrov, O. F., Shakhova, I. A. and Vorob'ev, V. S. 2007 Phys. Plasmas 14, 040705.CrossRefGoogle Scholar
[2]Fortov, V. E., Vaulina, O. S., Petrov, O. F., Vasiliev, M. N., Gavrikov, A. V. et al. 2007 Phys. Rev. E 75, 1.Google Scholar
[3]Vaulina, O. S., Petrov, O. F. and Fortov, V. E. 2008 Phys. Rev. Lett. 101, 195003.Google Scholar
[4]Hou, L., Piel, A. and Shukla, P. 2009 Phys. Rev. Lett. 102, 085002.CrossRefGoogle Scholar
[5]Sanbonmatsu, K. Y. and Murillo, M. S. 2001 Phys. Rev. Lett. 86, 1215.CrossRefGoogle Scholar
[6]Saigo, N. and Hamaguchi, S. 2002 Phys. Plasmas 9, 1210.CrossRefGoogle Scholar
[7]Nosenko, V and Goree, J. 2004 Phys. Rev. Lett. 93, 155004.CrossRefGoogle Scholar
[8]Gavrikov, A., Shakhova, I., Ivanov, A. et al. 2005 Phys. Lett. A 336, 378.CrossRefGoogle Scholar
[9]Ivlev, A., Steinberg, V., Kompaneets, R. et al. 2007 Phys. Rev. Lett. 98, 145003.CrossRefGoogle Scholar
[10]Vaulina, O. S., Petrov, O. F., Fortov, V. E., Chernyshev, A. V., Gavrikov, A. V. and Shakhova, I. A. 2004 Phys. Rev. Lett. 93, 035004.CrossRefGoogle Scholar
[11]Vaulina, O. S., Petrov, O. F., Fortov, V. E., Chernyshev, A. V., Gavrikov, A. V., Shakhova, I. A. and Semenov, Y. P. 2003 Plasma Phys. Rep. 29, 642.CrossRefGoogle Scholar
[12]Vaulina, O. S., Vladimirov, S. V., Petrov, O. F. and Fortov, V. E. 2002 Phys. Rev. Lett. 88, 245002.CrossRefGoogle Scholar
[13]Vaulina, O. S., Lisin, E. A., Gavrikov, A. V., Petrov, O. F. and Fortov, V. E. 2009 Phys. Rev. Lett. 103, 035003.CrossRefGoogle Scholar
[14]Shukla, P. K. and Eliasson, B. 2009 Rev.Mod. Phys. 80.Google Scholar
[15]Kudrin, L. P. 1974 Statistical Plasma Physics. Moscow: Atomizdat.Google Scholar