Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T19:44:37.981Z Has data issue: false hasContentIssue false

Inverse mirror plasma experimental device (IMPED) – a magnetized linear plasma device for wave studies

Published online by Cambridge University Press:  08 December 2014

Sayak Bose*
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428, India
P. K. Chattopadhyay
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428, India
J. Ghosh
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428, India
S. Sengupta
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428, India
Y. C. Saxena
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428, India
R. Pal
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
*
Email address for correspondence: [email protected]

Abstract

In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n ⩽ 1%, Luniform ~ 120 cm at argon filling pressure of ~10−4 mbar and axial magnetic field of B = 1090 G.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, P. J., Jones, H. G. and Franklin, R. N. 1968 Dispersion of electron plasma waves. Plasma Phys. 10 (10), 911.Google Scholar
Bauer, B. S., Wong, A. Y., Decyk, V. K. and Rosenthal, G. 1992 Experimental observation of superstrong electron plasma waves and wave breaking. Phys. Rev. Lett. 68, 37063709.Google Scholar
Boeschoten, F. and Schwirzke, F. 1962 Investigation of a stationary plasma in a magnetic field. Nucl. Fusion 2 (1–2), 54.Google Scholar
Bose, S., Kaur, M., Chattopadhyay, P. K., Ghosh, J. and Saxena, Y. C. 2014 Imped – a new magnetized linear plasma device with wide operating range. Manuscript submitted.CrossRefGoogle Scholar
Botha, G., Arber, T., Nakariakov, V. M. and Keenan, F. P. 2000 A developed stage of alfven wave phase mixing. Astron. Astrophys. 363 (3), 11861194.Google Scholar
Chen, F. F. 1962 Production of Laboratory Plasmas, Plasma Physics: Summer Institute, Princeton University, 1962 : Lecture Notes. Trustees of Princeton University.Google Scholar
Coffey, T. P. 1971 Breaking of large amplitude plasma oscillations. Phys. Fluids (1958–1988) 14 (7), 14021406.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in nonlinear plasma theory, Academic Press, New York.Google Scholar
Dawson, J. 1961 On landau damping. Phys. Fluids (1958–1988) 4 (7), 869874.Google Scholar
Dawson, J. 1962 One dimensional plasma model. Phys. Fluids (1958–1988) 5 (4), 445459.Google Scholar
Dawson, J. M. 1959 Nonlinear electron oscillations in a cold plasma. Phys. Rev. 113, 383387.Google Scholar
Derfler, H. and Simonen, T. C. 1967 Experimental verification of landau waves in an isotropic electron plasma. J. Appl. Phys. 38 (13), 50145020.Google Scholar
Esarey, E., Schroeder, C. B. and Leemans, W. P. 2009 Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Franklin, R. N., Hamberger, S. M., Lampis, G. and Smith, G. J. 1975a Nonlinear behaviour of a finite amplitude electron plasma wave. i. electron trapping effects. Proc. R. Soc. A 347 (1648), 124.Google Scholar
Franklin, R. N., Hamberger, S. M., Lampis, G. and Smith, G. J. 1975b Nonlinear behaviour of a finite amplitude electron plasma wave. ii. wave-wave interactions. Proc. R. Soc. A 347 (1648), 2546.Google Scholar
Franklin, R. N., MacKinlay, R. R., Edgley, P. D. and Wall, D. N. 1978 Nonlinear behaviour of a finite amplitude electron plasma wave. iii. the sideband instability. Proc. R. Soc. A 360 (1701), 229242.Google Scholar
Gekelman, W. and Stenzel, R. L. 1975 Large, quiescent, magnetized plasma for wave studies. Rev. Sci. Instrum. 46 (10), 13861393.Google Scholar
Infeld, E. and Rowlands, G. 1990 Langmuir oscillations against a single-ion pulse or cavity background. Phys. Rev. A 42, 838842.Google Scholar
Infeld, E., Rowlands, G. and Torvén, S. 1989 Ion density cavities can cause nonlinear plasma oscillations to peak. Phys. Rev. Lett. 62, 22692272.Google Scholar
Kaw, P. K., Lin, A. T. and Dawson, J. M. 1973 Quasiresonant mode coupling of electron plasma waves. Phys. Fluids 16 (11), 19671975.Google Scholar
Kodama, Ret al. 2001 Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412 (6849), 798802.Google Scholar
Landau, L. 1946 On the vibrations of the electronic plasma. J. Phys. 10, 2534.Google Scholar
Limpaecher, R. and MacKenzie, K. R. 1973 Magnetic multipole containment of large uniform collisionless quiescent plasmas. Rev. Sci. Instrum. 44 (6), 726731.Google Scholar
Malmberg, J. H., Wharton, C. B. and Drummond, W. E. 1966 Lanadau damping of electron plasma waves. In: Proc. Conf. Plasma Physics and Controlled Nuclear Fusion Research, International Atomic Energy Agency, Vienna, pp. 485–497.Google Scholar
Malmberg, J. H. and Wharton, C. B. 1967 Collisionless damping of large-amplitude plasma waves. Phys. Rev. Lett. 19, 775778.Google Scholar
Modena, A.et al. 1995 Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606608.Google Scholar
de Nicola, S. and Nappi, C. 1992 Collisional drag can prevent plasma oscillations from breaking. EPL Europhys. Lett.) 19 (5), 381.CrossRefGoogle Scholar
O'Neil, T. 1965 Collisionless damping of nonlinear plasma oscillations. Phys. Fluids (1958–1988) 8 (12), 22552262.Google Scholar
Rynn, N. and D'Angelo, N. 1960 Device for generating a low temperature, highly ionized cesium plasma. Rev. Sci. Instrum. 31 (12), 13261333.Google Scholar
Sengupta, S., Kaw, P., Saxena, V., Sen, A. and Das, A. 2011 Phase mixing/wave breaking studies of large amplitude oscillations in a cold homogeneous unmagnetized plasma. Plasma Phys. Control. Fusion 53 (7), 074 014.Google Scholar
Sengupta, S. and Kaw, P. K. 1999 Phase mixing of nonlinear plasma oscillations in an arbitrary mass ratio cold plasma. Phys. Rev. Lett. 82, 18671870.Google Scholar
Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. and Mason, R. J. 1994 Ignition and high gain with ultrapowerful lasers*. Phys. Plasmas (1994–present) 1 (5), 16261634.CrossRefGoogle Scholar
Tajima, T. and Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Tonks, L. and Langmuir, I. 1929 Oscillations in ionized gases. Phys. Rev. 33, 195210.Google Scholar
Verma, P. S., Sengupta, S. and Kaw, P. 2012 Residual bernstein-greene-kruskal-like waves after one-dimensional electron wave breaking in a cold plasma. Phys. Rev. E 86, 016 410.Google Scholar
Wharton, C. B., Malmberg, J. H. and O'Neil, T. M. 1968 Nonlinear effects of large-amplitude plasma waves. Phys. Fluids (1958–1988) 11 (8), 17611763.CrossRefGoogle Scholar