Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T14:02:36.518Z Has data issue: false hasContentIssue false

Introduction of Zeeman splitting in CHIANTI

Published online by Cambridge University Press:  09 October 2020

M. Giarrusso*
Affiliation:
INFN, Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123Catania, Italy
E. Landi
Affiliation:
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI48109, USA
G. Del Zanna
Affiliation:
DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, CambridgeCB3 0WA, UK
F. Leone
Affiliation:
Università di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, I-95123Catania, Italy INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123Catania, Italy
*
Email address for correspondence: [email protected]

Abstract

High-resolution spectra emitted by laboratory plasmas provide invaluable diagnostic tools for the measurement of plasma properties. To be implemented, they require a large amount of atomic data and transition rates, which are available in several spectral codes. In this paper we present a new feature added to the CHIANTI code, which allows us to calculate the Zeeman splitting of spectral lines in the presence of a magnetic field with known intensity and orientation. When combined with the CHIANTI database and software to calculate level populations and line emissivities, this new feature returns the emissivities in all four Stokes parameters, that can be utilized for the measurement of the magnetic field inside laboratory plasma chambers, along with other plasma parameters. This new feature can be applied to the analysis of the emission of laboratory plasmas created in different devices.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barret, D., Lam Trong, T., den Herder, J.-W., Piro, L., Barcons, X., Huovelin, J., Kelley, R., Mas-Hesse, J. M., Mitsuda, K., Paltani, S., et al. 2016 The Athena X-ray Integral Field Unit (X-IFU). In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9905, p. 99052F. SPIE.Google Scholar
Catanzaro, G., Giarrusso, M., Leone, F., Munari, M., Scalia, C., Sparacello, E. & Scuderi, S. 2016 Spectroscopic study of the HgMn star HD 49606: the quest for binarity, abundance stratifications and magnetic field. Mon. Not. R. Astron. Soc. 460 (2), 19992007.CrossRefGoogle Scholar
Chung, H. K., Chen, M. H., Morgan, W. L., Ralchenko, Y. & Lee, R. W. 2005 FLYCHK: generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energ. Dens. Phys. 1 (1), 312.CrossRefGoogle Scholar
Del Zanna, G., Dere, K. P., Young, P. R., Landi, E. & Mason, H. E. 2015 CHIANTI – an atomic database for emission lines. Version 8. Astron. Astrophys. 582, A56.CrossRefGoogle Scholar
Dere, K. P., Del Zanna, G., Young, P. R., Landi, E. & Sutherland, R. S. 2019 CHIANTI – an atomic database for emission lines. XV. Version 9, improvements for the X-ray satellite lines. Astrophys. J. Suppl. 241 (2), 22.CrossRefGoogle Scholar
Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. & Young, P. R. 1997 CHIANTI – an atomic database for emission lines. Astron. Astrophys. Suppl. 125, 149173.CrossRefGoogle Scholar
Fujimoto, T. & Iwamae, A. 2008 Plasma Polarization Spectroscopy. Springer.CrossRefGoogle Scholar
Geller, R. 1976 Electron cyclotron resonance multiply charged ion sources. IEEE Trans. Nucl. Sci. 23 (2), 904912.CrossRefGoogle Scholar
Giarrusso, M. 2019 The INFN project MAPS_3D. Il Nuovo Cimento C 42 (5), 227.Google Scholar
Giarrusso, M., Avila, G., Del Zanna, G., Landi, E., Leone, F., Munari, M., Castro, G., Celona, L., Gammino, S., Mascali, D., et al. 2018 High resolution spectropolarimetry: from astrophysics to ECR plasmas. J. Instrum. 13 (11), C11020.CrossRefGoogle Scholar
Giarrusso, et al. 2020 LAPSUS: LAboratory Plasma Spectroscopy for Ultraviolet Space. J. Plasma Phys. (under review).Google Scholar
Kaastra, J. S., Mewe, R. & Nieuwenhuijzen, H. 1996 SPEX: a new code for spectral analysis of X & UV spectra. In UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas (ed. Yamashita, K. & Watanabe, T.), pp. 411414. Universal Academy Press.Google Scholar
Kronholm, R., Kalvas, T., Koivisto, H., Kosonen, S., Marttinen, M., Neben, D., Sakildien, M., Tarvainen, O. & Toivanen, V. 2020 ECRIS plasma spectroscopy with a high resolution spectrometer. Rev. Sci. Instrum. 91 (1), 013318.CrossRefGoogle ScholarPubMed
Landi Degl'Innocenti, E. & Landolfi, M. 2004 Polarization in Spectral Lines. Kluwer Academic Publishers.CrossRefGoogle Scholar
Leone, F., Avila, G., Bellassai, G., Bruno, P., Catalano, S., Di Benedetto, R., Di Stefano, A., Gangi, M., Giarrusso, M., Greco, V., et al. 2016 A method to calibrate the high-resolution catania astrophysical observatory spectropolarimeter. Astron. J. 151 (5), 116.CrossRefGoogle Scholar
Leone, F., Scalia, C., Gangi, M., Giarrusso, M., Munari, M., Scuderi, S., Trigilio, C. & Stift, M. J. 2017 A method to measure the transverse magnetic field and orient the rotational axis of stars. Astrophys. J. 848 (2), 107.CrossRefGoogle Scholar
Messiah, A. 1962 Quantum Mechanics. North Holland.Google Scholar
Scalia, C., Leone, F., Gangi, M., Giarrusso, M. & Stift, M. J. 2017 The multi-line slope method for measuring the effective magnetic field of cool stars: an application to the solar-like cycle of $\in$ Eri. Mon. Not. R. Astron. Soc. 472 (3), 35543563.CrossRefGoogle Scholar
Semel, M., Ramírez Vélez, J. C., Martínez González, M. J., Asensio Ramos, A., Stift, M. J., López Ariste, A. & Leone, F. 2009 Multiline Zeeman signatures through line addition. Astron. Astrophys. 504 (3), 10031009.CrossRefGoogle Scholar
Shore, B. W. & Menzel, D. H. 1968 Principles of Atomic Spectra. Wiley.CrossRefGoogle Scholar
Smith, R. K., Brickhouse, N. S., Liedahl, D. A. & Raymond, J. C. 2001 Standard formats for atomic data: the APED. In Astronomical Society of the Pacific Conference Series, vol. 247, p. 161. Astronomical Society of the Pacific.Google Scholar
Stift, M. J. & Leone, F. 2017 a Spurious Doppler maps from noisy spectra and zero-field inversions. Mon. Not. R. Astron. Soc. 465 (3), 28802885.CrossRefGoogle Scholar
Stift, M. J. & Leone, F. 2017 b Zeeman Doppler maps: always unique, never spurious? Astrophys. J. 834 (1), 24.CrossRefGoogle Scholar
Stift, M. J., Leone, F. & Cowley, C. R. 2012 The recondite intricacies of Zeeman Doppler mapping. Mon. Not. R. Astron. Soc. 419 (4), 29122920.CrossRefGoogle Scholar
Summers, H. P. 2004 The ADAS User Manual, version 2.6. Available at: http://www.adas.ac.uk.Google Scholar