Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T22:25:21.222Z Has data issue: false hasContentIssue false

Interaction of electromagnetic fields with warm slightly ionized magneto-plasmas

Published online by Cambridge University Press:  13 March 2009

O. De Barbieri
Affiliation:
Istituto di Scienze Fisiche, Università di Milano, Milano, Italy, Gruppo Nazionale di Elettronica Quantistica e Plasmi del C.N.R. -Sezione di Milano
C. Maroli
Affiliation:
Istituto di Scienze Fisiche, Università di Milano, Milano, Italy, Gruppo Nazionale di Elettronica Quantistica e Plasmi del C.N.R. -Sezione di Milano

Abstract

The problem concerning the interaction of electromagnetic fields with a warm, slightly ionized magneto-plasma is analysed by means of the multiple time scales asymptotic technique. Only initial value problems in an infinite plasma are here considered in detail. It is shown how the full set of Vlasov–Maxwell equations, modified through a standard Boltzmann collision integral to take account of the elastic electron-neutral encounters, can be reduced, in the basic limit assumed, to a set of two coupled non-linear integro-difl�erential equations for the dominant terms of the longitudinal fields and of the electron distribution function. Once the initial conditions are specified, the behaviour of the transverse initial field is also described. A particular example has been given for the so-called progressing-wave initial conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Bernstein, I. B. 1962 Discharge Theory. Lecture Notes for the Summer Institute in Plasma Physics, Princeton University.Google Scholar
Caldirola, P., De Barbieri, O. & Maroli, C. 1966 Nuovo Cimento 42B, 266.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1952 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Cole, J. D. & Kevorkian, J. 1963 Nonlinear Differential Equations and Nonlinear Mechanics, p. 113. Ed. by La Salle, J. P. and Lefschetz, S.. New York: Academic Press.CrossRefGoogle Scholar
Davidson, R. C. 1966 Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, MATT-496.Google Scholar
De Barbieri, O., & Maroli, C. 1967 Ann. Phys. (N.Y.) 42, 315.CrossRefGoogle Scholar
De Barbieri, O., Maroli, C. & Orefice, A. 1967 Nuovo Cimento 48B, 378.CrossRefGoogle Scholar
Dupree, T. H. 1963 Phys. Fluids 6, 1714.CrossRefGoogle Scholar
Frieman, E. A. 1963 J. Math. Phys. 4, 410.CrossRefGoogle Scholar
Frieman, E. A. & Rutherford, P. 1964 Ann. Phys. (N.Y.) 28, 134.CrossRefGoogle Scholar
Ginzburg, V. L. & Gurevich, A. V. 1960 Soviet Phys. Uspekhi, 3, 115, 175.CrossRefGoogle Scholar
Ginzburg, V. L. 1961 Propagation of Electromagnetic Waves in Plasma. Amsterdam: North Holland Publishing Company.Google Scholar
Klimontovich, Yu. L. 1958 Soviet Phys. JETP 6, 753.Google Scholar
Klimontovich, Yu. L. 1960 Soviet Phys. JETP 10, 524; 11, 876.Google Scholar
Pozzoli, R. 1967 Nuovo Cirnento 50B, 137.CrossRefGoogle Scholar
Sandri, G. 1963 Ann. Phys. (N.Y.) 24, 332, 380.CrossRefGoogle Scholar