Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T13:37:07.209Z Has data issue: false hasContentIssue false

Instability of field-aligned electron–cyclotron waves in a magnetic mirror plasma with anisotropic temperature

Published online by Cambridge University Press:  25 July 2016

N. I. Grishanov*
Affiliation:
V. N. Karazin Kharkov National University, Svoboda Sq. 4, 61022 Kharkiv, Ukraine Ukrainian State University of Railway Transport, Feuerbach Sq. 7, 61050 Kharkiv, Ukraine
N. A. Azarenkov
Affiliation:
V. N. Karazin Kharkov National University, Svoboda Sq. 4, 61022 Kharkiv, Ukraine
*
Email address for correspondence: [email protected]

Abstract

Dispersion characteristics have been analysed for field-aligned electron–cyclotron waves (also known as right-hand polarized waves, extraordinary waves or whistlers) in a cylindrical magnetic mirror plasma including electrons with anisotropic temperature. It is shown that the instability of these waves is possible only in the range below the minimal electron–cyclotron frequency, which is much lower than the gyrotron frequency used for electron–cyclotron resonance power input into the plasma, under the condition where the perpendicular temperature of the resonant electrons is larger than their parallel temperature. The growth rates of whistler instability in the two magnetized plasma models, where the stationary magnetic field is either uniform or has a non-uniform magnetic mirror configuration, are compared.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagryansky, P. A., Kovalenko, Yu. V., Savkin, V. Ya., Solomakhin, A. L. & Yakovlev, D. V. 2014 First results of an auxiliary electron cyclotron resonance heating experiment in the GDT magnetic mirror. Nucl. Fusion 54, 082001.Google Scholar
Bagulov, D. S. & Kotelnikov, I. A. 2012 Electron cyclotron resonance near the axis of the gas-dynamic trap. Phys. Plasmas 19, 082502.CrossRefGoogle Scholar
Cho, T., Kondoh, T., Hirata, M., Sakasai, A., Yamaguchi, N., Mase, A., Kiwamoto, Y., Hirose, A., Ogura, K., Tanaka, S. & Miyoshi, S. 1987 Observation of hot electrons produced by second harmonic electron cyclotron heating in the axisymmetric tandem mirror GAMMA 10. Nucl. Fusion 27, 14211438.Google Scholar
Cuperman, S. 1981 Electromagnetic kinetic instabilities in multicomponent space plasmas: theoretical predictions and computer simulation experiments. Rev. Geophys. 37, 307343.CrossRefGoogle Scholar
Devine, P. E., Chapman, S. C. & Eastwood, J. W. 1995 One- and two-dimensional simulations of whistler mode waves in an anisotropic plasma. J. Geophys. Res. 100 (17), 189204.CrossRefGoogle Scholar
Garner, R. C., Mauel, M. E., Hokin, S. A., Post, R. S. & Smatlak, D. L. 1990 Whistler instability in an electron–cyclotron resonance-heated, mirror-confined plasma. Phys. Fluids B 2, 242252.Google Scholar
Gary, S. P. 1993 Theory of Space Plasma Microinstabilities. Cambridge University Press.Google Scholar
Gary, S. P. & Karimabadi, H. 2006 Linear theory of electron temperature anisotropy instabilities: whistler, mirror, and Weibel. J. Geophys. Res. 111, A11224.CrossRefGoogle Scholar
Gary, S. P. & Wang, J. 1996 Whistler instability: electron anisotropy upper bound. J. Geophys. Res. 101 (10), 749754.CrossRefGoogle Scholar
Grishanov, N. I. & Azarenkov, N. A. 2009 Cyclotron wave instabilities in axisymmetric mirror-trapped plasmas with anisotropic temperature. Plasma Phys. Control. Fusion 51, 125004.CrossRefGoogle Scholar
Hojo, H. & Hatori, T. 1993 Bounce resonance heating and transport in a magnetic mirror. J. Phys. Soc. Japan 62, 22122215.Google Scholar
Ivanov, A. A. & Prikhodko, V. V. 2013 Gas-dynamic trap: an overview of the concept and experimental results. Plasma Phys. Control. Fusion 55, 063001.CrossRefGoogle Scholar
Katanuma, I., Kiwamoto, Y., Ichimura, M., Saito, T. & Miyoshi, S. 1990 Electron cyclotron resonance heating of tandem mirror plasma. Phys. Fluids B 2, 9941006.Google Scholar
Kennel, C. F. & Petschek, H. E. 1966 Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 128.Google Scholar
Lazar, M., Schlickeiser, R. & Poedts, S. 2009 On the existence of Weibel instability in a magnetized plasma. I: parallel wave propagation. Phys. Plasmas 16, 012106.Google Scholar
Mirnov, V. V. & Ryutov, D. D. 1979 Linear gas-dynamic system for plasma confinement. Sov. Tech. Phys. Lett. 5, 279281.Google Scholar
Nekrasov, F. M., Grishanov, N. I., Elfimov, A. G., De Azevedo, C. A. & De Assis, A. S. 1996 Dielectric permeability of a mirror-trapped plasma. Plasma Phys. Control. Fusion 38, 853868.Google Scholar
Nishimura, K., Gary, S. P. & Li, H. 2002 Whistler anisotropy instability: wave–particle scattering rate. J. Geophys. Res. 107 (A11), 13751380.Google Scholar
Ossakow, S. L., Haber, I. & Ott, E. 1972 Simulation of whistler instabilities in anisotropic plasmas. Phys. Fluids 15, 15381540.Google Scholar
Pritchett, P. L., Schriver, D. & Ashour-Abdalla, M. 1991 Simulation of whistler waves excited in the presence of a cold plasma cloud: implications for the CRRES mission. J. Geophys. Res. 96 (19), 507512.Google Scholar
Scharer, J. E. & Trivelpiece, A. W. 1967 Cyclotron wave instabilities in a plasma. Phys. Fluids 10, 591595.Google Scholar
Tamano, T. 1995 Tandem mirror experiments in GAMMA 10. Phys. Plasmas 2, 23212330.Google Scholar