Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T00:50:01.056Z Has data issue: false hasContentIssue false

Instability and saturation of drift-convective modes in an inhomogeneous plasma

Published online by Cambridge University Press:  13 March 2009

R. Balescu
Affiliation:
Institut für Theoretische Physik, Universität Düsseldorf, D-4000 Düsseldorf, F.R. Germany
H. Bessenrodt
Affiliation:
Institut für Theoretische Physik, Universität Düsseldorf, D-4000 Düsseldorf, F.R. Germany
P. K. Shukla
Affiliation:
Institut für Theoretische Physik, Universität Düsseldorf, D-4000 Düsseldorf, F.R. Germany
K. H. Spatschek
Affiliation:
Institut für Theoretische Physik, Universität Düsseldorf, D-4000 Düsseldorf, F.R. Germany

Abstract

It is found that the inclusion of the electron inertia effect (parallel to an external magnetic field) can provide a linear coupling between the electrostatic drift and the convective modes in a non-uniform plasma. This coupling leads to new branches of rapidly growing modes, which are calculated in the kinetic as well as in the hydrodynamic regimes. To study the saturation of the linear unstable modes, we account for the mode coupling and derive a set of model nonlinear fluid equations. A perturbation technique is employed to obtain a nonlinear evolution equation. In the steady state, the latter yields the saturated electric potential. It is argued that the enhanced low-frequency fluctuations can cause anomalous particle transport in a magnetoplasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dawson, J. M., Okuda, H. & Carlile, R. N. 1971 Phys. Rev. Lett. 27, 491.CrossRefGoogle Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence, Academic.Google Scholar
Mazzucato, E. 1982 Phys. Rev. Lett. 48, 1828.CrossRefGoogle Scholar
Mikhailovskii, A. B. 1983 Basic Plasma Physics, vol. 1 (ed. Galeev, A. A. and Sudan, R. N.). North-Holland.Google Scholar
Miyamoto, K. 1980 Plasma Physics for Nuclear Fusion. MIT Press.CrossRefGoogle Scholar
Mollenauer, L. F. 1985 Phil. Trans. Roy. Soc. A 315, 437.Google Scholar
Newell, A. C. & Whitehead, J. A. 1969 J. Fluid Mech. 38, 279.CrossRefGoogle Scholar
Okuda, H. & Dawson, J. M. 1972 Phys. Rev. Lett. 28, 1625.CrossRefGoogle Scholar
Okuda, H. & Dawson, J. M. 1973 Phys. Fluids, 16, 408.CrossRefGoogle Scholar
Schlüter, A., Lortz, D. & Busse, F. H. 1965 J. Fluid Mech. 23, 129.CrossRefGoogle Scholar
Shukla, P. K., Yu, M. Y., Rahman, H. U. & Spatschek, K. H. 1984 Phys. Rep. 105, 227.CrossRefGoogle Scholar
Shukla, P. K., Spatschek, K. H. & Balescu, R. 1985 Phys. Lett. 107A, 461.CrossRefGoogle Scholar
Shukla, P. K. & Spatschek, K. H. 1986 Phys. Fluids, 29, 1488.CrossRefGoogle Scholar
Slusher, R. E. & Surko, C. M. 1980 Phys. Fluids, 23, 2438.CrossRefGoogle Scholar
TFR Group & Truc, A. 1984 Plasma Phys. Contr. Fusion, 26, 1045.CrossRefGoogle Scholar
Waltz, R. E. 1985 Phys. Fluids, 28, 577.CrossRefGoogle Scholar