Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T01:50:28.489Z Has data issue: false hasContentIssue false

Influence of relaxation processes on the structure of a thermal boundary layer in partially ionized argon

Published online by Cambridge University Press:  13 March 2009

M. E. H. Van Dongen
Affiliation:
Physics Department, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, Nederland
R. B. Van
Affiliation:
Physics Department, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, Nederland
P. Van Eck
Affiliation:
Physics Department, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, Nederland
H. J. L. Hagebeuk
Affiliation:
Physics Department, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, Nederland
A. Hirschberg
Affiliation:
Physics Department, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, Nederland
A. C. B. Hutten-Mansfeld
Affiliation:
Physics Department, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, Nederland
H. J. Jager
Affiliation:
Physics Department, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, Nederland
J. F. H. Willems
Affiliation:
Physics Department, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, Nederland

Abstract

A model for the unsteady thermal boundary-layer development at the end wall of a shock tube, in partially ionized atmospheric argon, is proposed. Consideration is given to ionization and thermal relaxation processes. In order to obtain some insight into the influence of the relaxation processes on the structure of the boundary layer, a study of the frozen and equilibrium limits has been carried out. The transition from a near-equilibrium situation in the outer part of the boundary layer towards a frozen situation near the wall has been determined numerically. Experimental data on the electron and atom density profiles obtained from laser schlieren and absorption measurements are presented. A quantitative agreement between theory and experiment is found for a moderate degree of ionization (3 %). At a higher degree of ionization the structure of the boundary layer is dominated by the influence of radiation cooling, which has been neglected in the model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alpher, R. A. & Whith, D. R. 1958 J. Fluid Mech. 3, 457.CrossRefGoogle Scholar
Ames, W. F. 1969 Numerical Methods for Partial Differential Equations. Nelson.Google Scholar
Bacri, J. & Gomes, A. M. 1978 J. Phys. D, Appl. Phys. 11, 2185.CrossRefGoogle Scholar
Bates, D. R. 1980 J. Phys. B, Atom. Molec. Phys. 13, L51.CrossRefGoogle Scholar
Bengtson, R. D., Miller, M. H., Koopman, D. W. & Wilkerson, T. D. 1970 Phys. Fluids, 13, 372.CrossRefGoogle Scholar
Bohm, D. 1949 Characteristics of Electrical Discharges in Magnetic Fields (ed. Guthrie, A. and Wakerling, R. K.). McGraw-Hill.Google Scholar
Bunting, J. O. & Devoto, R. S. 1967 SUDAAR no. 313. Stanford University.Google Scholar
Chapman, S. & Cowling, T. G. 1952 The Mathematical Theory of Non-uniform Gases. Cambridge University Press.Google Scholar
Chen, F. F. 1965 Plasma Diagnostic Techniques (ed. Huddeistone, R. H. and Leonard, S. L.). Academic.Google Scholar
Ceen, S. H. & Saxena, S. C. 1975 Mol. Phys. 29, 455.Google Scholar
Daybelge, U. 1970 J. Appl. Phys. 41, 2130.CrossRefGoogle Scholar
Devoto, R. S. 1967 Phys. Fluids, 10, 2105.CrossRefGoogle Scholar
Devoto, R. S. 1973 Phys. Fluids, 16, 616.CrossRefGoogle Scholar
Drawin, H. W. & Emard, F. 1973 Beiträge aus derPlasmaphysik, 13, 143.CrossRefGoogle Scholar
Ellis, H. W., Pal, R. Y. & McDaniel, E. W. 1976 Atomic Data and Nuclear Data Tables, 17, 177.CrossRefGoogle Scholar
Fay, J.A. 1962 Aveo-Everott, Rep. AMP 71.Google Scholar
Frost, L. S. & Phelps, A. V. 1964 Phys. Rev. 136 A, 1538.CrossRefGoogle Scholar
Griem, H. R. 1964 Plasma spectroscopy. McGraw-Hill.Google Scholar
Griem, H. R. 1974 Spectral Line Broadening by Plasmas. Academic.Google Scholar
Hashiguchi, S. & Inutake, M. 1979 Journal de physique, 40 (C7), 681.Google Scholar
Hinnov, E. & Hirschberg, J. G. 1962 Phys. Rev. 125, 795.CrossRefGoogle Scholar
Hirschberg, A. 1981 Ph.D. Thesis, Technological University of Eindhoven.Google Scholar
Hirscrberg, A., Van, Heugten W. H. H., Willems, J. F. H. & Van, Dongen M. E. H. 1980 Int. J. Heat Mass Transfer, 23, 799.CrossRefGoogle Scholar
Hutten-Mansfeld, A. C. B. 1976 Ph.D. Thesis, Technological University of Eindhoven.Google Scholar
Jacob, J. H. & Mangano, J. A. 1976 Appl. Phys. Lett. 29, 466.CrossRefGoogle Scholar
Katsonis, K. 1976 Thèse, Université Paris Sud, Centre d'Orsay.Google Scholar
Kthara, T. & Aono, O. 1963 J. Phys. Soc. Japan, 18, 837.Google Scholar
Knöös, S. P. 1968 J. Plasma Phys. 2, 207.CrossRefGoogle Scholar
Kon'kov, A. A. & Kulaoin, S. G. 1973 High Temp. 11, 945.Google Scholar
Kon'kov, A. A. & Kulagin, S. G. 1974 High Temp. 12, 426.Google Scholar
Kon'lov, A. A. & Sokolov, A. I. 1976 High Temp. 14, 833.Google Scholar
Kopalnsky, J. 1971 Z. Physik, 248, 417.CrossRefGoogle Scholar
Kuiper, R. 1968 SUDAAR no. 353, Stanford University.Google Scholar
Liu, W. S., Whitten, B. T. & Glass, I. I. 1978 J. Fluid Mech. 87, 609.CrossRefGoogle Scholar
Liu, W. S. & Glass, I. I. 1979 J. Fluid Mech. 91, 679.CrossRefGoogle Scholar
Liu, W. S., Takayama, K. & Glass, I. I. 1980 J. Fluid Mech. 97, 513.CrossRefGoogle Scholar
Logan, P. F., Stalker, R. J. & McIntosh, M. K. 1977 J. Phys. D, Appl. Phys. 10, 323.CrossRefGoogle Scholar
Luchina, A. A. 1978 Phys. Fluids, 21, 1923.CrossRefGoogle Scholar
Milloy, H. B., Crompton, R. W., Rees, J. A. & Robertson, A. G. 1977 Aust. J. Phys. 30, 61.CrossRefGoogle Scholar
Mitchner, M. & Kruger, C. A. 1973 Partially Ionized Gases. Wiley.Google Scholar
Nishida, M. 1977 J. Appl. Math. Phys. (ZAMP), 28, 265.CrossRefGoogle Scholar
Petscrek, H. E., Rose, P. H., Glick, H. S., Kane, A. & Kantrowitz, A. 1955 J. Appl. Phys. 26, 83.CrossRefGoogle Scholar
Schulz-Gulde, E. 1970 Z. Physik, 230, 449.CrossRefGoogle Scholar
Smeets, G. 1965 Z. Naturforschung, 20 a, 683.CrossRefGoogle Scholar
Takano, Y., Miyoshi, S. & Akamatsu, T. 1979 12th International Symposium on Shock Tubes and Waves, Jerusalem (ed. Rom, J. and Liftshitz, A.).Google Scholar
Touloukian, S. P., Liley, P. E. & Saxena, S. C. 1970 TPRC Data Series on Thermo. physical Properties of Matter III. Plenum.Google Scholar
Vaguin, S. P., Yacobi, Yu. A., Yakovlev, V. V. & Soloukhin, R. I. 1978 Revue de Physiqus Appliquée, 13, 399.CrossRefGoogle Scholar
Vervisch, P., Terrier, M. & Valentin, P. 1979 Journal de Physique, 40, 139.CrossRefGoogle Scholar
Vorob'ev, V. S. 1979 High Temp. 16, 391.Google Scholar