Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T22:39:40.476Z Has data issue: false hasContentIssue false

Influence of ion and variable dust charge on electron-dust bremsstrahlung emission spectrum in complex plasmas

Published online by Cambridge University Press:  10 August 2023

Myoung-Jae Lee
Affiliation:
Department of Physics, Hanyang University, Seoul 04763, South Korea Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
Naoko Ashikawa
Affiliation:
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
Young-Dae Jung*
Affiliation:
Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea
*
Email address for correspondence: [email protected]

Abstract

The bremsstrahlung process is studied in complex plasmas including the influence of ions and variable dust charge. The electron-dust particle bremsstrahlung radiation cross-section (e-D-BRCS) is obtained with the analytic expression for the effective dust charge in terms of the Debye length and the temperature ratio. The e-D-BRCS is found to be reduced with either the decrease of ion temperature or increase of electron temperature. The ion density effect is found to be more important in the small electron temperature domain. Interestingly, the influence of ion temperature and density is found to be independent of the bremsstrahlung emission energy. The effective dust charge is also found to decrease with an increase of the ratio of the electron temperature to the ion temperature. In addition, it is found that the effective dust charge increases with an increase of the ratio of the electron density to the ion density. Moreover, the e-D-BRCS is found to be increased with the decrease of ion density.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bliokh, P., Sinitsin, V. & Yaroshenko, V. 1995 Dusty and Self-Gravitational Plasma in Space. Kluwer.CrossRefGoogle Scholar
Bouchoule, A. 1999 Complex Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing. Wiley.Google Scholar
Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J. & Knuth, D.E. 1996 On the Lambert W function. Adv. Comput. Math. 5, 329.CrossRefGoogle Scholar
Embréus, O., Stahl, A. & Fülöp, T. 2016 Effect of bremsstrahlung radiation emission on fast electrons in plasmas. New J. Phys. 18, 093023.CrossRefGoogle Scholar
Fujimoto, T. 2004 Plasma Spectroscopy. Oxford University Press.CrossRefGoogle Scholar
Gould, R.J. 2006 Electromagnetic Processes. Princeton University Press.CrossRefGoogle Scholar
Hakopian, A.V. 1991 Bremsstrahlung of fast charged particles moving in an external magnetic field. Phys. Lett. A 157, 503.CrossRefGoogle Scholar
Jackson, J.D. 1999 Classical Electrodynamics, 3rd ed. Wiley.Google Scholar
Jung, Y.-D. & Jeong, H.-D. 1996 Bremsstrahlung in electron-ion Coulomb scattering in strongly coupled plasma using the hyperbolic-orbit trajectory method. Phys. Rev. E 54, 1912.CrossRefGoogle ScholarPubMed
Jung, Y.-D. & Murakami, I. 2009 Effects of electron temperature and density on ion-dust bremsstrahlung spectrum in dusty plasmas. J. Appl. Phys. 105, 106106.CrossRefGoogle Scholar
Khrapak, S.A., Klumov, B.A. & Morfill, G.E. 2008 Electric potential around an absorbing body in plasmas: effect of ion-neutral collisions. Phys. Rev. Lett. 100, 225003.CrossRefGoogle ScholarPubMed
Kompaneets, R., Morfill, G.E. & Ivlev, A.V. 2009 Design of new binary interaction classes in complex plasmas. Phys. Plasmas 16, 043705.CrossRefGoogle Scholar
Mendis, D.A. & Rosenberg, M. 1994 Cosmic duty plasma. Annu. Rev. Astron. Astrophys. 32, 419.CrossRefGoogle Scholar
Padmanabhan, T. 2001 Theoretical Astrophysics, Vol. II: Stars and Stellar Systems. Cambridge University Press.CrossRefGoogle Scholar
Ramazanov, T.S., Dzhumagulova, K.N., Daniyarov, T.T., Omarbakiyeva, Y.U.A., Kodanova, S.K. & Dosbolayev, M.K. 2010 Effective interaction potential of dust particles in a plasma from experimental pair correlation functions. J. Plasma Phys. 76, 57.CrossRefGoogle Scholar
Ramazanov, T.S., Dzhumagulova, K.N., Jumabekov, A.N. & Dosbolayev, M.K. 2008 Structural properties of dusty plasma in direct current and radio frequency gas discharges. Phys. Plasmas 15, 053704.CrossRefGoogle Scholar
Riffert, H., Klingler, M. & Ruder, H. 1999 Bremsstrahlung emissivity of a proton-electron plasma in a strong magnetic field. Phys. Rev. Lett. 87, 3432.CrossRefGoogle Scholar
Shukla, P.K. & Eliasson, B. 2009 Colloquium: fundamentals of dust-plasma interactions. Rev. Mod. Phys. 81, 25.CrossRefGoogle Scholar
Shukla, P.K. & Mamum, A.A. 2002 Introduction to Complex Plasma Physics. Institute of Physics Publishing.Google Scholar
Tielens, A.G.G.M. 2005 The Physics and Chemistry of the Interstellar Medium. Cambridge University Press.CrossRefGoogle Scholar
Totsuji, H. 1985 Bremsstrahlung in high-density plasmas. Phys. Rev. A 32, 3005.CrossRefGoogle ScholarPubMed
Vidhya Lakshmi, S., Bharuthram, R. & Shukla, P.K. 1993 Debye shielding in a dusty plasma. Astrophys. Space Sci. 209, 213.CrossRefGoogle Scholar
Weinberg, S. 2015 Lectures on Quantum Mechanics, 3rd ed. Cambridge University Press.CrossRefGoogle Scholar
Younsi, S. & Tribeche, M. 2008 Nonlinear localized dust acoustic waves in a charge varying dusty plasma with trapped ions. Phys. Lett. A 372, 5181.CrossRefGoogle Scholar