Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T23:13:13.440Z Has data issue: false hasContentIssue false

Impact of the electron density and temperature gradient on drift-wave turbulence in the Large Plasma Device

Published online by Cambridge University Press:  03 August 2022

Conor Perks
Affiliation:
North Carolina State University, Raleigh, NC, USA
Saskia Mordijck*
Affiliation:
Department of Physics, William & Mary, Williamsburg, VA, USA
Troy Carter
Affiliation:
Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
Bart Van Compernolle
Affiliation:
General Atomics, San Diego, CA, USA
Stephen Vincena
Affiliation:
Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
Giovanni Rossi
Affiliation:
Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
David Schaffner
Affiliation:
Department of Physics, Bryn Mawr College, PA, USA
*
Email address for correspondence: [email protected]

Abstract

In this paper we present an experimental study of edge turbulence in the Large Plasma Device at UCLA. We utilize a scan of discharge power and prefill pressure (neutral density) to show experimentally that turbulent density fluctuations decrease with decreasing density gradient, as predicted for resistive drift-wave turbulence (RDWT). As expected for RDWT, we observe that the cross-phase between the density and potential fluctuations is close to 0. Moreover, the addition of an electron temperature gradient leads to a reduction in the amplitude of the density fluctuations, as expected for RDWT. However, counter to theoretical expectations, we find that the potential fluctuations do not follow the same trends as the density fluctuations for changes either in density gradients or the addition of a temperature gradient. The disconnect between the density and potential fluctuations is connected to changes in the parallel flows as a result of differences in the prefill pressure, i.e. neutral density. Further analysis of the density and potential fluctuation spectra show that the electron temperature gradient reduces the low frequency fluctuations up to $10 \,{\rm kHz}$ and the introduction of a temperature gradient leads to an unexpected ${\sim }{\rm \pi}$ shift of the density–potential cross-phase at ${\sim }10\,{\rm kHz}$, while maintaining the typical resistive drift-wave cross-phase at lower frequencies. These experiments partly confirm existing knowledge on resistive drift-wave turbulence, but also introduce new observations that indicate a need for dedicated nonlinear three-dimensional turbulence simulations that include neutrals.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angioni, C., Fable, E., Greenwald, M., Maslov, M., Peeters, A.G., Takenaga, H. & Weisen, H. 2009 Particle transport in tokamak plasmas, theory and experiment. Plasma Phys. Control. Fusion 51 (12), 124017.CrossRefGoogle Scholar
Camargo, S.J., Biskamp, D. & Scott, B.D. 1995 Resistive drift-wave turbulence. Phys. Plasmas 2 (1), 4862.CrossRefGoogle Scholar
Carter, T.A. 2006 Intermittent turbulence and turbulent structures in a linear magnetized plasma. Phys. Plasmas 13 (1), 010701.CrossRefGoogle Scholar
Carter, T.A. & Maggs, J.E. 2009 Modifications of turbulence and turbulent transport associated with a bias-induced confinement transition in the large plasma device. Phys. Plasmas 16 (1), 012304.CrossRefGoogle Scholar
Chung, K.S. 2012 Mach probes. Plasma Sources Sci. Technol. 21 (6), 063001.CrossRefGoogle Scholar
D'Ippolito, D.A., Myra, J.R. & Krasheninnikov, S.I. 2002 Cross-field blob transport in tokamak scrape-off-layer plasmas. Phys. Plasmas 9 (1), 222233.CrossRefGoogle Scholar
D'Ippolito, D.A., Russell, D.A., Myra, J.R., Thakur, S.C., Tynan, G.R. & Holland, C. 2012 Effect of parallel currents on drift-interchange turbulence: comparison of simulation and experiment. Phys. Plasmas 19 (10), 102301.CrossRefGoogle Scholar
Friedman, B.C. 2013 Simulation analysis of zero mean flow edge turbulence in lapd. PhD thesis, UCLA.Google Scholar
Fulöp, T., Catto, P.J. & Helander, P. 1998 Neutral diffusion and anomalous effects on ion flow shear. Phys. Plasmas 5 (9), 33983401.CrossRefGoogle Scholar
Fu, X.R., Horton, W., Xiao, Y., Lin, Z., Sen, A.K. & Sokolov, V. 2012 Validation of electron temperature gradient turbulence in the columbia linear machine. Phys. Plasmas 19 (3), 032303.CrossRefGoogle Scholar
Garcia, O.E., Pitts, R.A., Horacek, J., Madsen, J., Naulin, V., Nielsen, A.H. & Rasmussen, J.J. 2007 Collisionality dependent transport in tcv sol plasmas. Plasma Phys. Control. Fusion 49 (12B), B47.CrossRefGoogle Scholar
Garland, S., Reuther, K., Ramisch, M. & Manz, P. 2017 The collisionality dependence of intermittency level in drift-wave turbulence in the stellarator tj-k. Phys. Plasmas 24 (11), 112307.CrossRefGoogle Scholar
Gekelman, W., Pribyl, P., Lucky, Z., Drandell, M., Leneman, D., Maggs, J., Vincena, S., Van Compernolle, B., Tripathi, S.K.P., Morales, G., et al. 2016 The upgraded large plasma device, a machine for studying frontier basic plasma physics. Rev. Sci. Instrum. 87 (2), 025105.CrossRefGoogle ScholarPubMed
Goldston, R.J. 2020 Introduction to Plasma Physics. CRC Press.CrossRefGoogle Scholar
Hajjar, R.J., Diamond, P.H. & Tynan, G.R. 2018 The ecology of flows and drift wave turbulence in csdx: a model. Phys. Plasmas 25 (2), 022301.CrossRefGoogle Scholar
Hasegawa, A. & Mima, K. 1977 Stationary spectrum of strong turbulence in magnetized nonuniform plasma. Phys. Rev. Lett. 39, 205208.CrossRefGoogle Scholar
Hasegawa, A. & Mima, K. 1978 Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21 (1), 8792.CrossRefGoogle Scholar
Hasegawa, A. & Wakatani, M. 1983 Plasma edge turbulence. Phys. Rev. Lett. 50 (9), 682.CrossRefGoogle Scholar
Horton, W. 1999 Drift waves and transport. Rev. Mod. Phys. 71 (3), 735.CrossRefGoogle Scholar
Horton, W., Hoang, G.T., Bourdelle, C., Garbet, X., Ottaviani, M. & Colas, L. 2004 Electron transport and the critical temperature gradient. Phys. Plasmas 11 (5), 26002606.CrossRefGoogle Scholar
Kadomtsev, B.B. 1965 Plasma Turbulence. Academic Press.Google Scholar
Kasuya, N., Yagi, M. & Itoh, K. 2005 Simulation of resistive drift wave turbulence in a linear device. J. Plasma Phys. 72 (6), 957.CrossRefGoogle Scholar
Kasuya, N., Yagi, M., Itoh, K. & Itoh, S.-I. 2008 Selective formation of turbulent structures in magnetized cylindrical plasmas. Phys. Plasmas 15 (5), 052302.CrossRefGoogle Scholar
Katz, N., Egedal, J., Fox, W., Le, A. & Porkolab, M. 2008 Experiments on the propagation of plasma filaments. Phys. Rev. Lett. 101, 015003.CrossRefGoogle ScholarPubMed
Kobayashi, T., Kin, F., Kawachi, Y., Sasaki, M., Kosuga, Y., Yamasaki, K. & Inagaki, S. 2020 Impact of helium neutral gas puff on plasma turbulence in linear magnetized argon plasmas. Phys. Plasmas 27 (6), 062309.CrossRefGoogle Scholar
Krasheninnikov, S.I. & Smolyakov, A.I. 2003 On neutral wind and blob motion in linear devices. Phys. Plasmas 10 (7), 30203021.CrossRefGoogle Scholar
Le, A., Daughton, W., Ohia, O., Chen, L.-J., Liu, Y.-H., Wang, S., Nystrom, W.D. & Bird, R. 2018 Drift turbulence, particle transport, and anomalous dissipation at the reconnecting magnetopause. Phys. Plasmas 25 (6), 062103.CrossRefGoogle Scholar
Lieberman, M.A. & Lichtenberg, A.J. 2005 Principles of Plasma Discharges and Materials Processing. John Wiley & Sons.CrossRefGoogle Scholar
Maggs, J.E., Carter, T.A. & Taylor, R.J. 2007 Transition from Bohm to classical diffusion due to edge rotation of a cylindrical plasma. Phys. Plasmas 14 (5), 052507.CrossRefGoogle Scholar
Mosetto, A., Halpern, F.D., Jolliet, S., Loizu, J. & Ricci, P. 2013 Turbulent regimes in the tokamak scrape-off layer. Phys. Plasmas 20 (9), 092308.CrossRefGoogle Scholar
Numata, R., Ball, R. & Dewar, R.L. 2007 Bifurcation in electrostatic resistive drift wave turbulence. Phys. Plasmas 14 (10), 102312.CrossRefGoogle Scholar
Omotani, J., Pusztai, I., Newton, S. & Fülöp, T. 2016 Plasma rotation from momentum transport by neutrals in tokamaks. Nucl. Fusion 56 (12), 124002.CrossRefGoogle Scholar
Perez, J.C., Horton, W., Bengtson, R.D. & Carter, T. 2006 Study of strong cross-field sheared flow with the vorticity probe in the large plasma device. Phys. Plasmas 13 (5), 055701.CrossRefGoogle Scholar
Popovich, P., Umansky, M.V., Carter, T.A. & Friedman, B. 2010 Analysis of plasma instabilities and verification of the bout code for the large plasma device. Phys. Plasmas 17 (10), 102107.CrossRefGoogle Scholar
Powers, E.J. 1974 Spectral techniques for experimental investigation of plasma diffusion due to polychromatic fluctuations. Nucl. Fusion 14 (5), 749752.CrossRefGoogle Scholar
Rogers, B.N. & Ricci, P. 2010 Low-frequency turbulence in a linear magnetized plasma. Phys. Rev. Lett. 104, 225002.CrossRefGoogle Scholar
Saitou, Y., Yonesu, A., Shinohara, S., Ignatenko, M.V., Kasuya, N., Kawaguchi, M., Terasaka, K., Nishijima, T., Nagashima, Y., Kawai, Y., et al. 2007 Reduction effect of neutral density on the excitation of turbulent drift waves in a linear magnetized plasma with flow. Phys. Plasmas 14 (7), 072301.CrossRefGoogle Scholar
Schaffner, D.A. 2013 Study of flow, turbulence and transport on the large plasma device. PhD thesis, University of California, Los Angeles.Google Scholar
Schaffner, D.A., Carter, T.A., Rossi, G.D., Guice, D.S., Maggs, J.E., Vincena, S. & Friedman, B. 2012 Modification of turbulent transport with continuous variation of flow shear in the large plasma device. Phys. Rev. Lett. 109, 135002.CrossRefGoogle ScholarPubMed
Scott, B. 2001 Low frequency fluid drift turbulence in magnetised plasmas. Tech. Rep. Max-Planck-Institut für Plasmaphysik.Google Scholar
Scott, B.D. 2005 Drift wave versus interchange turbulence in tokamak geometry: linear versus nonlinear mode structure. Phys. Plasmas 12 (6), 062314.CrossRefGoogle Scholar
Thakur, S.C., Xu, M., Manz, P., Fedorczak, N., Holland, C. & Tynan, G.R. 2013 Suppression of drift wave turbulence and zonal flow formation by changing axial boundary conditions in a cylindrical magnetized plasma device. Phys. Plasmas 20 (1), 012304.CrossRefGoogle Scholar
Tynan, G.R., Fujisawa, A. & McKee, G. 2009 A review of experimental drift turbulence studies. Plasma Phys. Control. Fusion 51 (11), 113001.CrossRefGoogle Scholar
Vaezi, P., Holland, C., Thakur, S.C. & Tynan, G.R. 2017 Validation study of a drift-wave turbulence model for csdx linear plasma device. Phys. Plasmas 24 (9), 092310.CrossRefGoogle Scholar
Wakatani, M. & Hasegawa, A. 1984 A collisional drift wave description of plasma edge turbulence. Phys. Fluids 27 (3), 611618.CrossRefGoogle Scholar