Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T12:16:49.175Z Has data issue: false hasContentIssue false

How to quantify solid–liquid phase transition: Lennard–Jones system case study

Published online by Cambridge University Press:  18 October 2013

BORIS A. KLUMOV*
Affiliation:
High Temperature Institute, Moscow 123060, Russia ([email protected])

Abstract

In this paper we analyzed different measures, characterizing the melting of Lennard–Jones solid, and associated with the properties of both the translational and the orientational local order. It has been shown that the most sensitive indicator of melting is the cumulant of the probability distribution function over w6 bond-order parameter. The criterion of melting based on the indicator is proposed; the criterion can be used for any solids, having fcc/hcp types of symmetry.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avinash, K. and Shukla, P. K. 2011 Phase coexistence and a critical point in ultracold neutral plasmas. Phys. Rev. Lett. 107, 135002.Google Scholar
Errington, J. R., Debenedetti, P. G. and Torquato, S. 2003 Quantification of order in the Lennard–Jones system. J. Chem. Phys. 118, 22562263.CrossRefGoogle Scholar
Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. and Weitz, D. A. 2001 Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 5515.CrossRefGoogle ScholarPubMed
Khrapak, S. A., Klumov, B. A., Huber, P., Molotkov, V. I., Lipaev, A. M., Naumkin, V. N., Ivlev, A. V., Thomas, H. M., Schwabe, M., Morfill, G. E., Petrov, O. F., Fortov, V. E., Malenchenko, Y. and Volkov, S. 2012 Fluid-solid phase transitions in three-dimensional complex plasmas under microgravity conditions. Phys. Rev. E 85, 066407.Google ScholarPubMed
Klumov, B. A. 2010 On melting criteria for complex plasma. Phys.-Usp. 53, 1053.CrossRefGoogle Scholar
Klumov, B. A. 2013 Structural features of a Lennard–Jones system at melting and crystallization. JETP Lett. 97, 327332.CrossRefGoogle Scholar
Klumov, B. A., Khrapak, S. A. and Morfill, G. E. 2011 Structural properties of dense hard sphere packings. Phys. Rev. B 83, 184105.CrossRefGoogle Scholar
Mitic, S., Klumov, B. A., Konopka, U., Thoma, M. H. and Morfill, G. E. 2008 Structural properties of complex plasmas in a homogeneous dc discharge. Phys. Rev. Lett. 101, 125002.CrossRefGoogle Scholar
Mitic, S., Klumov, B. A., Khrapak, S. A. and Morfill, G. E. 2013 Three dimensional complex plasma structures in a combined radio frequency and direct current discharge. Phys. Plasmas 20, 043701.CrossRefGoogle Scholar
Nose, S. and Yonezawa, F. 1986 Isothermal-isobaric computer simulations of melting and crystallization of a Lennard-Jones system. J. Chem. Phys. 84, 1803.CrossRefGoogle Scholar
Raveché, H. J., Mountain, R. D. and Streett, W. B. 1974 Freezing and melting properties of the Lennard–Jones system. J. Chem. Phys. 61 (1), 19701984.CrossRefGoogle Scholar
Steinhardt, P. J., Nelson, D. R. and Ronchetti, M. 1983 Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784.CrossRefGoogle Scholar
Truskett, T. M., Torquato, S. and Debenedetti, P. G. 2000 Towards a quantification of disorder in materials: Distinguishing equilibrium and glassy sphere packings. Phys. Rev. E. 62, 9931001.CrossRefGoogle ScholarPubMed