Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T06:09:36.177Z Has data issue: false hasContentIssue false

High-density positron beam generation via Breit–Wheeler and trident processes using ultra-intense lasers

Published online by Cambridge University Press:  09 January 2025

S. Chintalwad
Affiliation:
Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
S. Morris
Affiliation:
Department of Physics, University of Warwick, Coventry CV4 7AL, UK
B. Ramakrishna*
Affiliation:
Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
*
Email address for correspondence: [email protected]

Abstract

Using two counter-propagating ultra-intense laser interactions with a solid target, we conducted a study on the generation of electron-positron pairs via the multi-photon Breit–Wheeler (BW) process and trident process. These processes were simulated using the particle-in-cell (PIC) code EPOCH. Our proposed scheme involves irradiating two targets with two counter-propagating lasers. High-energy photons are produced when hot electrons collide with the reflected laser pulse at the target's front, leading to electron and positron pair production. In the single-target scenario, electron bunches are extracted from the target by the p-polarized laser electromagnetic field and accelerated by the laser ponderomotive force before colliding with the counter-propagating laser. However, using two targets enhances pair creation compared with the single-target set-up. We observed that in two-target configurations, the increased number of high-energy gamma-rays contributes to higher-energy electron–positron generation. Additionally, the generation of hot electrons is also more pronounced in this scheme. Consequently, the laser demonstrates higher efficiency in generating gamma photons and positrons in the dual-target set-up, which is beneficial for investigating high-energy pair production and gamma-ray emission. The generated positrons exhibit a density of the order of $10^{27}\,\text {m}^{-3}$ and can be accelerated to energies of 1.5 GeV. The involvement of hot electrons in the target is crucial for generating high-energy photons and positrons. The maximum pair yield reaches $8 \times 10^9$ for the BW process and $10^8$ for the trident process. Notably, the total laser energy conversion efficiencies to electrons, $\gamma$-rays and positrons show improvement in the dual-target configuration. Specifically, the laser energy absorbed by positrons increases from 11.62 % in Case A to 13.12 % in Case B. These enhancements in conversion efficiency and electron/positron density have significant practical implications in experimental set-ups. In both the BW and trident processes, the two-target set-up dominates, highlighting its effectiveness. We also compared the strengths of both approaches, suggesting that these simple models of implementing two targets can be used in experiments as well.

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arber, T.D., Bennett, K., Brady, C.S., Lawrence-Douglas, A., Ramsay, M.G., Sircombe, N.J., Gillies, P., Evans, R.G., Schmitz, H., Bell, A.R., et al. 2015 Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57, 113001.CrossRefGoogle Scholar
Breit, G. & Wheeler, J.A. 1934 Collision of two light quanta. Phys. Rev. 46 (12), 1087.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T.Zh., Kando, M., Koga, J., Kondo, K. & Korn, G. 2015 On the problems of relativistic labo-ratory astrophysics and fundamental physics with super powerful lasers. Plasma Phys. Rep. 41 (1), 151.CrossRefGoogle Scholar
Chen, H., Sheppard, J.C., Meyerhofer, D.D., Hazi, A., Link, A., Anderson, S., Baldis, H.A., Fedosejev, R., Gronberg, J., Izumi, N., et al. 2013 Emittance of positron beams produced in intense laser plasma interaction. Phys. Plasmas 20, 013111.CrossRefGoogle Scholar
Chintalwad, S., Krishnamurthy, S., Morris, S., Ridgers, C.P. & Ramakrishna, B. 2020 Investigation of qed effects with varying z in thin foil targets. IEEE Trans. Plasma Sci. 49, 573577.CrossRefGoogle Scholar
Davies, H., Bethe, H. & Maximon, L. 1954 Theory of bremsstrahlung and pair production. II. Integral cross section for pair production. Phys. Rev. 93, 788.CrossRefGoogle Scholar
ELI 2021 http://www.extreme-light-infrastructure.eu for the Extreme light infrastructure.Google Scholar
Gahn, C., Tsakiris, G.D., Pretzler, G., Witte, K.J., Delfin, C., Wahlström, C.-G. & Habs, D. 2000 Generating positrons with femtosecond-laser pulses. Appl. Phys. Lett. 77, 2622.CrossRefGoogle Scholar
Gahn, C., Tsakiris, G.D., Pretzler, G., Witte, K.J., Thirolf, P., Habs, D., Delfin, C., & Wahlström, C.G. 2002 Generation of mev electrons and positrons with femtosecond pulses from a table-top laser system. Phys. Plasmas 9, 987999.CrossRefGoogle Scholar
Gryaznykh, D., Kandiev, Y. & Lykov, V. 1998 Estimates of electron-positron pair production in the interaction of high-power laser radiation with high-z targets. J. Exp. Theor. Phys. Lett. 67, 257.CrossRefGoogle Scholar
Heinzl, T., Liesfeld, B., Amthor, K.U., Schwoerer, H., Sauerbrey, R. & Wipf, A. 2006 On the observation of vacuum birefringence. Opt. Commun. 267, 318.CrossRefGoogle Scholar
Heitler, W. 1954 The Quantum Theory of Radiation. Oxford University Press.Google Scholar
Hubbell, J.H., Gimm, H.A. & O/verbo/, I. 1980 Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 mev–100 gev photons in elements $z=1$ to 100. J. Phys. Chem. 9, 1023.Google Scholar
Jian-Xun, L., Ma, Y.Y., Zhao, J., Yu, T.P., Yang, X.H., Gan, L.F., Zhang, G.B., Yan, J.F., Zhuo, H.B., Liu, J.J., Yu, T.P., Cao, L.Q., Zhao, Y., Zhang, G.B., Ma, L., Qu, S., Ma, Y.Y., Shao, F.Q. & Zhao, J., et al. 2015 High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target. Phys. Plasmas 22, 103102.Google Scholar
Jian-Xun, L., Yu, T.P., Cao, L.Q., Zhao, Y., Zhang, G.B., Ma, L., Qu, S., Ma, Y.Y., Shao, F.Q. & Zhao, J. 2019 Tens gev positron generation and acceleration in a compact plasma channel. Plasma Phys. Control. Fusion 61, 065014.Google Scholar
Jiang, J., Wu, Y.C., Liu, X.B., Wang, R.S., Nagai, Y., Inoue, K., Shimizu, Y. & Toyama, T. 2015 Microstructural evolution of RPV steels under proton and ion irradiation studied by positron annihilation spectroscopy. J. Nucl. Mater. 458, 326334.CrossRefGoogle Scholar
Johnson, D.K., Auerbach, D., Blumenfeld, I., Barnes, C.D., Clayton, C.E., Decker, F.J., Deng, S., Emma, P., Hogan, M.J. & Huang, C. 2006 Positron production by x rays emitted by betatron motion in a plasma wiggler. Phys. Rev. Lett. 97, 175003.CrossRefGoogle Scholar
Liang, E.P., Wilks, S.C. & Tabak, M. 1998 Pair production by ultraintense lasers. Phys. Rev. Lett. 81 (22), 4887.CrossRefGoogle Scholar
Luo, W., Zhu, Y.B., Zhuo, H.B., Ma, Y.Y., Song, Y.M., Zhu, Z.C., Wang, X.D., Li, X.H., Turcu, I.C.E. & Chen, M. 2015 Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets. Phys. Plasmas 22, 063112.CrossRefGoogle Scholar
Motz, J.W., Olsen, H.A. & Koch, H.W. 1969 Pair production by photons. Rev. Mod. Phys. 41, 581.CrossRefGoogle Scholar
Müller, C. & Keitel, C.H. 2009 Abundant positron production. Nat. Photonics 3 (5), 245246.CrossRefGoogle Scholar
Myatt, J.F., Delettrez, J.A., Maximov, A.V., Meyerhofer, D.D., Short, R.W., Stoeckl, C. & Storm, M. 2009 Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation. Phys. Rev. E 79, 066409.CrossRefGoogle ScholarPubMed
Pike, O.J., Mackenroth, F., Hill, E.G. & Rose, S.J. 2014 A photon–photon collider in a vacuum hohlraum. Nat. Photonics 8 (6), 434436.CrossRefGoogle Scholar
Ridgers, C.P., Brady, C.S., Duclous, R., Kirk, J.G., Bennett, K., Arber, T.D., Robinson, A.P.L. & Bell, A.R. 2012 Dense electron-positron plasmas and ultraintense $\gamma$-rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165006.CrossRefGoogle ScholarPubMed
Shen, B.F. & Meyer-ter-Vehn, J. 2001 High-density (>1023 cm$^3$) relativistic electron plasma confined between two laser pulses in a thin foil. Phys. Plasmas 8.CrossRefGoogle Scholar
Shuoquin, W., Clayton, C.E., Blue, B.E., Dodd, E.S., Marsh, K.A., Mori, W.B., Joshi, C., Lee, S., Muggli, P., Katsouleas, T. et al. 2002 X-ray emission from betatron motion in a plasma wiggler. Phys. Rev. Lett. 88, 135004.Google Scholar
Strickland, A.D. & Mourou, G. 1985 Compression of amplified chirped optical pulses. Opt. Commun. 56, 219.CrossRefGoogle Scholar
Wilks, S.C., Chen, H., Liang, E., Patel, P., Price, D., Remington, B., Shepherd, R., Tabak, M. & Kruer, W.L. 2005 Electron-positron plasmas created by ultra-intense laser pulses interacting with solid targets. Astrophys. Space Sci. 298, 347.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. 1992 Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.CrossRefGoogle ScholarPubMed
XCELS 2023 http://www.xcels.iapras.ru for Exawatt Center for Extreme Light Studies.Google Scholar
Yan, Y.H., Dong, K., Yuchi, W., Zhang, B., Yao, Z. & Gu, Y. 2013 Numerical simulation study of positron production by intense laser-accelerated electrons. Phys. Plasmas 20, 103106.CrossRefGoogle Scholar
Yuan, T., Chen, M., Yu, J.Y., Liu, W.Y., Luo, W., Weng, S.M. & Sheng, Z.M. 2017 Target transverse size and laser polarization effects on pair production during ultra- relativistic-intense laser interaction with solid targets. Phys. Plasmas 24, 063104.CrossRefGoogle Scholar
Zi, M., Ma, Y.Y., Yang, X.H., Zhang, G.B., Liu, J.X., Yuan, Y., Peng, M., Cui, Y. & Kawata, S. 2023 High-energy–density positron and $\gamma$-photon generation via two counter-propagating ultra-relativistic laser irradiating a solid target. Eur. Phys. J. D 77, 41.CrossRefGoogle Scholar