Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T15:34:00.590Z Has data issue: false hasContentIssue false

High resolution electron beam measurements on the ALPHA-X laser–plasma wakefield accelerator

Published online by Cambridge University Press:  27 February 2012

G. H. WELSH
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 0NG, UK ([email protected])
S. M. WIGGINS
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 0NG, UK ([email protected])
R. C. ISSAC
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 0NG, UK ([email protected])
E. BRUNETTI
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 0NG, UK ([email protected])
G. G. MANAHAN
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 0NG, UK ([email protected])
M. R. ISLAM
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 0NG, UK ([email protected])
S. CIPICCIA
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 0NG, UK ([email protected])
C. ANICULAESEI
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 0NG, UK ([email protected])
B. ERSFELD
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 0NG, UK ([email protected])
D. A. JAROSZYNSKI
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 0NG, UK ([email protected])

Abstract

The Advanced Laser–Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme at the University of Strathclyde is developing laser–plasma accelerators for the production of ultra-short high quality electron bunches. Focussing such LWFA bunches into an undulator, for example, requires particular attention to be paid to the emittance, electron bunch duration and energy spread. On the ALPHA-X wakefield accelerator beam line, a high intensity ultra-short pulse from a 30 TW Ti:Sapphire laser is focussed into a helium gas jet to produce femtosecond duration electron bunches in the range of 90–220 MeV. Measurements of the electron energy spectrum, obtained using a high resolution magnetic dipole spectrometer, show electron bunch r.m.s. energy spreads down to 0.5%. A pepper-pot mask is used to obtain transverse emittance measurements of a 128 ± 3 MeV mono-energetic electron beam. An average normalized emittance of ϵrms,x,y = 2.2 ± 0.7, 2.3 ± 0.6 π-mm-mrad is measured, which is comparable to that of a conventional radio-frequency accelerator. The best measured emittance of ϵrms,x, = 1.1 ± 0.1 π-mm-mrad corresponds to the resolution limit of the detection system. 3D particle-in-cell simulations of the ALPHA-X accelerator partially replicate the generation of low emittance, low energy spread bunches with charge less than 4 pC and gas flow simulations indicate both long density ramps and shock formation in the gas jet nozzle.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S. et al. 2003 GEANT4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A – Accel. Spectrom. Detect. Assoc. Equip. 506, 250303.CrossRefGoogle Scholar
Browne, C. P. and Buechner, W. W. 1956 Broad-range magnetic spectrograph. Rev. Sci. Instrum. 27, 899907.CrossRefGoogle Scholar
Brunetti, E., Shanks, R. P., Manahan, G. G., Islam, M. R., Ersfeld, B., Anania, M. P., Cipiccia, S., Issac, R. C., Raj, G. et al. 2010 Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator. Phys. Rev. Lett. 105, 215 007.CrossRefGoogle ScholarPubMed
Carneiro, J. P., Carrigan, R. A., Champion, M. S., Colestock, P. L., Edwards, H. T., Fuerst, J. D., Hartung, W. H., Koepke, K. P., Kuchnir, M. et al. 1999 In Proc. Invited Papers, 18th Biennial Particle Accelerator Conference, Vol.3, (Eds. Luccio, A. and MacKay, W.). Institute of Electrical and Electronics Engineers, New York, 1999, New York City, pp. 20272029.Google Scholar
Cipiccia, S., Islam, M. R., Ersfeld, B., Shanks, R. P., Brunetti, E., Vieux, G., Yang, X., Issac, R. C., Wiggins, S. M. et al. 2011 Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7, 867.CrossRefGoogle Scholar
Eichner, T., Gruner, F., Becker, S., Fuchs, M., Habs, D., Weingartner, R., Schramm, U., Backe, H., Kunz, P. et al. 2007 Miniature magnetic devices for laser-based, table-top free-electron lasers. Phys. Rev. Spec. Topics – Accel. Beams 10, 9.Google Scholar
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. and Malka, V. 2006 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737739.CrossRefGoogle ScholarPubMed
Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S. et al. 2002 OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In: Proc. Comput. Sci.-Iccs 2002, Pt Iii, Vol. 2331 (ed. Sloot, P., Tan, C. J. K., Dongarra, J. J. and Hoekstra, A. G.). Berlin: Springer-Verlag Berlin, pp. 342351.Google Scholar
Fritzler, S., Lefebvre, E., Malka, V., Burgy, F., Dangor, A. E., Krushelnick, K., Mangles, S. P. D., Najmudin, Z., Rousseau, J. P. et al. 2004 Emittance measurements of a laser-wakefield-accelerated electron beam. Phys. Rev. Lett. 92, 4.CrossRefGoogle ScholarPubMed
Fuchs, M., Weingartner, R., Popp, A., Major, Z., Becker, S., Osterhoff, J., Cortrie, I., Zeitler, B., Horlein, R. et al. 2009 Laser-driven soft-X-ray undulator source. Nat. Phys. 5, 826829.CrossRefGoogle Scholar
Huntington, C. M., Thomas, A. G. R., McGuffey, C., Matsuoka, T., Chvykov, V., Kalintchenko, G., Kneip, S., Najmudin, Z., Palmer, C. et al. 2011 Current filamentation instability in laser wakefield accelerators. Phys. Rev. Lett. 106, 4.CrossRefGoogle ScholarPubMed
Jaroszynski, D. A., Bingham, R., Brunetti, E., Ersfeld, B., Gallacher, J., van der Geer, B., Issac, R., Jamison, S. P., Jones, D. et al. 2006 Radiation sources based on laser-plasma interactions. Phil. Trans. R. Soc. A – Math. Phys. Eng. Sci. 364, 689710.CrossRefGoogle ScholarPubMed
Leemans, W. P., Nagler, B., Gonsalves, A. J., Toth, C., Nakamura, K., Geddes, C. G. R., Esarey, E., Schroeder, C. B. and Hooker, S. M. 2006 GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696699.CrossRefGoogle Scholar
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. 2007 Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Topics – Accel. Beams 10, 12.Google Scholar
Lundh, O., Lim, J., Rechatin, C., Ammoura, L., Ben-Ismail, A., Davoine, X., Gallot, G., Goddet, J. P., Lefebvre, E. et al. 2011 Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator. Nat. Phys. 7, 219222.CrossRefGoogle Scholar
Manahan, G. G., Brunetti, E., Shanks, R. P., Islam, M. R., Ersfeld, B., Anania, M. P., Cipiccia, S., Issac, R. C., Raj, G. et al. 2011 High resolution, single shot emittance measurement of relativistic electrons from laser-driven accelerator. In: Laser Acceleration of Electrons, Protons, and Ions and Medical Applications of Laser-Generated Secondary Sources of Radiation and Particles, Vol. 8079 (ed. Leemans, W. P., Esarey, E., Hooker, S. M., Ledingham, K. W. D., Spohr, K. and McKenna, P.). Bellingham: Spie-Int Soc Optical Engineering, p. 807 909.CrossRefGoogle Scholar
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G. et al. 2004 Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535538.CrossRefGoogle ScholarPubMed
Paterson, I. J., Clarke, R. J., Woolsey, N. C. and Gregori, G. 2008 Image plate response for conditions relevant to laser – plasma interaction experiments. Meas. Sci. Technol. 19, 095 301.CrossRefGoogle Scholar
Rechatin, C., Faure, J., Ben-Ismail, A., Lim, J., Fitour, R., Specka, A., Videau, H., Tafzi, A., Burgy, F. and Malka, V. (2009) Controlling the Phase-Space Volume of Injected Electrons in a Laser-Plasma Accelerator. Phys. Rev. Lett. 102, 4.CrossRefGoogle Scholar
Reitsma, A. J. W., Cairns, R. A., Bingham, R. and Jaroszynski, D. A. 2005 Efficiency and energy spread in laser-wakefield acceleration. Phys. Rev. Lett. 94, 085 004.CrossRefGoogle ScholarPubMed
Rousse, A., Phuoc, K. T., Shah, R., Pukhov, A., Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J. P. et al. 2004 Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 4.CrossRefGoogle ScholarPubMed
Schlenvoigt, H. P., Haupt, K., Debus, A., Budde, F., Jackel, O., Pfotenhauer, S., Schwoerer, H., Rohwer, E., Gallacher, J. G. et al. 2008 A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130133.CrossRefGoogle Scholar
Schmid, K. 2009 Supersonic Micro-Jets and Their Application to Few Cycle Laser Driven Electron Acceleration. München: LMU.Google Scholar
Sears, C. M. S., Buck, A., Schmid, K., Mikhailova, J., Krausz, F. and Veisz, L. 2010 Emittance and divergence of laser wakefield accelerated electrons. Phys. Rev. Spec. Topics – Accel. Beams 13, 092 803.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. and Ting, A. 1990 Nonlinear-interaction of intense laser-pulses in plasmas. Phys. Rev. A 41, 44634467.CrossRefGoogle ScholarPubMed
Sun, G. Z., Ott, E., Lee, Y. C. and Guzdar, P. 1987 Self-focusing of short intense pulse in plasmas. Phys. Fluids 30, 526532.CrossRefGoogle Scholar
Tajima, T. and Dawson, J. M. 1979 Laser electron-accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
van der Geer, S. B., Luiten, O. J., de Loos, M. J., Poplau, G. and van Rienen, U. 2005 3D space-charge model for GPT simulations of high-brightness electron bunches. In: Computational Accelerator Physics 2002, Vol. 175 (ed. Berz, M. and Makino, K.). Bristol: IOP Publishing Ltd, pp. 101110.Google Scholar
Wiggins, S. M., Anania, M. P., Brunetti, E., Cipiccia, S., Ersfeld, B., Islam, M. R., Issac, R. C., Raj, G., Shanks, R. P. et al. 2009 Narrow spread electron beams from a laser-plasma wakefield accelerator. In: Harnessing Relativistic Plasma Waves as Novel Radiation Sources from Terahertz to X-Rays and Beyond, Vol. 7359 (ed. Jaroszynski, D. A. and Rousse, A.) Bellingham: Spie-Int Soc Optical Engineering, pp. 735 914.CrossRefGoogle Scholar
Wiggins, S. M., Issac, R. C., Welsh, G. H., Brunetti, E., Shanks, R. P., Anania, M. P., Cipiccia, S., Manahan, G. G., Aniculaesei, C. et al. 2010 High quality electron beams from a laser wakefield accelerator. Plasma Phys. Control. Fusion 52, 124 032.CrossRefGoogle Scholar
Yamazaki, Y., Kurihara, T., Kobayashi, H., Sato, I. and Asami, A. 1992 High-precision pepper-pot technique for a low-emittance electron-beam. Nucl. Instrum. Methods Phys. Res. A – Accel. Spectrom. Detect. Assoc. Equip. 322, 139145.CrossRefGoogle Scholar