Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T15:16:13.348Z Has data issue: false hasContentIssue false

Hamiltonian formulation of direct laser acceleration in vacuum

Published online by Cambridge University Press:  01 October 2007

M. ELOY
Affiliation:
Faculdade de Engenharia da Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal ([email protected])
A. GUERREIRO
Affiliation:
CLOQ/Faculdade de Ciências da Universidade do Porto, R. do Campo Alegre, 687, 4169-007 Porto, Portugal
J. T. MENDONÇA
Affiliation:
GoLP/Centro de Física de Plasmas, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
R. BINGHAM
Affiliation:
Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK

Abstract

We present a new formulation for the direct laser acceleration of electrons in vacuum based on the Hamiltonian theory. Two different regimes for the snow-plowed, accelerated electrons are identified and characterized, the first pertaining to high-intensity and the second to low-intensity pulses, both leading to efficient electron acceleration. Particle energy yields are shown to be independent of the exact shape of the laser pulse and energy gains are estimated.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Mangles, S. et al. 2004 Nature 431, 535538.CrossRefGoogle Scholar
[2]Geddes, CGR., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. and Leemans, W. P. 2004 Nature 431, 538541.CrossRefGoogle Scholar
[3]Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J. P., Burgy, F., and Malka, V. 2004 Nature 431, 541544.CrossRefGoogle Scholar
[4]Leemans, W. P., Nagler, B., Gonsalves, A. J., Toth, C., Nakamura, K., Geddes, C. G. R., Esarey, E. E., Scroeder, C. B., and Hooker, S. M. 2006 Nat. Phys. 2 (10), 696699.CrossRefGoogle Scholar
[5]Blumenfeld, I. et al. 2007 Nature 445, 741744.CrossRefGoogle Scholar
[6]Bingham, R. 2007 Nature 445, 721722.CrossRefGoogle Scholar
[7]Malka, G. et al. 1997 Phys. Rev. Lett 17, 3314.CrossRefGoogle Scholar
[8]Esarey, E. et al. 1995 Phys. Rev. Lett. 52, 5443.Google Scholar
Salamin, Y. et al. 2002 Phys. Rev. Lett. 88, 95005.CrossRefGoogle Scholar
Kao, N. et al. , 2004 Appl. Phys. B 78, 781.Google Scholar
Dodin, I. Y. et al. 2003 Phys. Rev. E 68, 056402.Google Scholar
Liu, S. et al. 2004 Phys. Lett. A 324, 104.CrossRefGoogle Scholar
Sheng, Z. 2004 Phys. Rev. E 69, 016407.Google Scholar
McKinstrie, C. et al. 1997 Phys. Rev. E 56, 2130.Google Scholar
Startsev, E. A. et al. 2003 Phys. Plasmas 10, 2552.CrossRefGoogle Scholar
Pukhov, A. et al. 1999 Phys. Plasmas 6, 2847.CrossRefGoogle Scholar
Pukhov, A. et al. 1996 Phys. Rev. Lett. 76, 3975.CrossRefGoogle Scholar
[9]Lawson, J. D. et al. 1979 IEEE Trans. Nucl. Sci. NS-26, 4217.CrossRefGoogle Scholar
[10]Eloy, M. et al. 2001 Phys. Plasmas 8, 1084.CrossRefGoogle Scholar
[11]Eloy, M. et al. 2001 Phys. Scripta T89, 60.CrossRefGoogle Scholar
[12]Eloy, M. et al. 2001 Proc. SPIE 4424, 418.CrossRefGoogle Scholar
[13]Eloy, M. et al. 2003 ICPP 2002 Proceedings 689, 784.Google Scholar
[14]Mendonça, J. T. et al. 2001 Meas. Sci. Technol. 12, 112.CrossRefGoogle Scholar
[15]Eloy, M. et al. 1999 IFSA' 99 Proceedings, Amsterdam: Elsevier, p. 1038.Google Scholar
[16]Jackson, J. D. 1999 Classical Electrodynamics, 3rd edn. New York: Wiley.Google Scholar
[17]Goldstein, H. 1980 Classical Mechanics, 2nd edn. Reading, MA: Addison Wesley.Google Scholar
[18]Mendonça, J. T. 2001 Theory of Photon Acceleration. Bristol: IoP Publishing Ltd.CrossRefGoogle Scholar