Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T11:40:12.885Z Has data issue: false hasContentIssue false

Halo definition of homogeneous beams through energy distributions

Published online by Cambridge University Press:  05 April 2018

R. P. Nunes*
Affiliation:
Departamento de Engenharia Elétrica, Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Av. Osvaldo Aranha 103, 90035-190, Porto Alegre, RS, Brasil
W. Simeoni Jr.
Affiliation:
Universidade Federal do Pampa, Campus Dom Pedrito, Rua 21 de abril 80, 96450-000, Dom Pedrito, RS, Brasil
*
Email address for correspondence: [email protected]

Abstract

This work presents an energy criterion to define the halo of homogeneous and mismatched charged particle beams. In the simulations used in this work, the beam is considered to be azimuthally symmetric, initially cold and is confined by an external constant magnetic field inside a cylindrical conducting pipe. The energy criterion is established through the analysis of the beam energy distributions with time. The obtained results are in reasonable agreement with the past results that considered the beam phase-space topology, for many values of the beam initial envelope mismatch.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. K. & Wangler, T. P. 2002 Beam halo definitions based upon moments of the particle distribution. Phys. Rev. ST Accel. Beams 5, 124202.CrossRefGoogle Scholar
Bohn, C. L. 1993 Transverse phase-space dynamics of mismatched charged-particle beams. Phys. Rev. Lett. 70, 932935.CrossRefGoogle ScholarPubMed
Davidson, R. C. & Qin, H. 2001 Physics of Intense Charged Particle Beams in High Energy Accelerators. World Scientific.Google Scholar
Gluckstern, R. L. 1994 Analytic model for halo formation in high current ion linacs. Phys. Rev. Lett. 73, 12471250.Google Scholar
Lagniel, J.-M. 1994a Chaotic behaviour and halo formation from 2d space-charge dominated beams. Nucl. Instrum. Meth. Phys. Res. A 345 (3), 405410.Google Scholar
Lagniel, J.-M. 1994b On halo formation from space-charge dominated beams. Nucl. Instrum. Meth. Phys. Res. A 345 (1), 4653.CrossRefGoogle Scholar
Nunes, R. P. 2017 A particle-core model for inhomogeneous and mismatched charged particle beams. AIP Adv. 7 (6), 065011.Google Scholar
Nunes, R. P., Pakter, R. & Rizzato, F. B. 2007 Simplified self-consistent model for emittance growth in charged beams with mismatched envelopes. Phys. Plasmas 14 (2), 023104.Google Scholar
Nunes, R. P., Pakter, R. & Rizzato, F. B. 2008 An analytical model to determine equilibrium quantities of azimuthally symmetric and mismatched charged particle beams under linear focusing. J. Appl. Phys. 104 (1), 013302.Google Scholar
Nunes, R. P. & Rizzato, F. B. 2011 Nonlinear dynamics of relativistic charged particle beams. Appl. Phys. Lett. 98 (5), 051501.CrossRefGoogle Scholar
Nunes, R. P. & Rizzato, F. B. 2012 Nonlinear dynamics of inhomogeneous mismatched charged particle beams. Appl. Phys. Lett. 101 (7), 074106.Google Scholar
O’Connell, J. S., Wangler, T. P., Mills, R. S. & Crandall, K. R. 1993 Beam halo formation from space-charge dominated beams in uniform focusing channels. In Proceedings of International Conference on Particle Accelerators, vol. 5, pp. 36573659. IEEE.Google Scholar
Okamoto, H. & Ikegami, M. 1997 Simulation study of halo formation in breathing round beams. Phys. Rev. E 55, 46944705.Google Scholar
Reiser, M. 2004 Theory and Design of Charged Particle Beams. Wiley-VCH.Google Scholar
Rizzato, F. B., Pakter, R. & Levin, Y. 2007 Wave breaking and particle jets in intense inhomogeneous charged beams. Phys. Plasmas 14 (11), 110701.Google Scholar
Souza, E. G., Endler, A., Pakter, R., Rizzato, F. B. & Nunes, R. P. 2010 The controlling role of envelope mismatches in intense inhomogeneous charged beams. Appl. Phys. Lett. 96 (14), 141503.Google Scholar
Wangler, T. 2008 RF Linear Accelerators. Wiley-VCH.CrossRefGoogle Scholar
Wangler, T. P., Crandall, K. R., Ryne, R. & Wang, T. S. 1998 Particle-core model for transverse dynamics of beam halo. Phys. Rev. ST Accel. Beams 1, 084201.Google Scholar
Supplementary material: File

Nunes and Simeoni supplementary material

Supplementary movie

Download Nunes and Simeoni supplementary material(File)
File 22.5 MB